Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Giant optical anisotropy in a quasi-one-dimensional crystal

An Author Correction to this article was published on 08 September 2021

This article has been updated

Abstract

Optical anisotropy is a fundamental building block for linear and nonlinear optical components such as polarizers, wave plates, and phase-matching elements1,2,3,4. In solid homogeneous materials, the strongest optical anisotropy is found in crystals such as calcite and rutile5,6. Attempts to enhance anisotropic light–matter interaction often rely on artificial anisotropic micro/nanostructures (form birefringence)7,8,9,10,11. Here, we demonstrate rationally designed, giant optical anisotropy in single crystals of barium titanium sulfide (BaTiS3). This material shows an unprecedented, broadband birefringence of up to 0.76 in the mid- to long-wave infrared, as well as a large dichroism window with absorption edges at 1.6 μm and 4.5 μm for light with polarization along two crystallographic axes on an easily accessible cleavage plane. The unusually large anisotropy is a result of the quasi-one-dimensional structure, combined with rational selection of the constituent ions to maximize the polarizability difference along different axes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and chemistry of BaTiS3.
Fig. 2: Structural, vibrational and chemical characterization of BaTiS3.
Fig. 3: Optical anisotropy.

Similar content being viewed by others

Change history

  • 08 September 2021

    A Correction to this paper has been published: https://doi.org/10.1038/s41566-021-00875-y

  • 25 February 2022

    In the version of this article corrected 8 September 2021, there was an extraneous key in Fig. 3b, and the y-axis values and baseline in Fig. 3d were reoriented from “0.5 to −1.0” to “1.0 to −0.5”.

References

  1. Yasuno, Y., Makita, S., Sutoh, Y., Itoh, M. & Yatagai, T. Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography. Opt. Lett. 27, 1803–1805 (2002).

    Article  ADS  Google Scholar 

  2. Weber, M. F. Giant birefringent optics in multilayer polymer mirrors. Science 287, 2451–2456 (2000).

    Article  ADS  Google Scholar 

  3. Oka, K. & Kaneko, T. Compact complete imaging polarimeter using birefringent wedge prisms. Opt. Express 11, 1510–1519 (2003).

    Article  ADS  Google Scholar 

  4. Nicholls, L. H. et al. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials. Nat. Photon. 11, 628–633 (2017).

    Article  ADS  Google Scholar 

  5. Ghosh, G. Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals. Opt. Commun. 163, 95–102 (1999).

    Article  ADS  Google Scholar 

  6. Sinton, W. M. Birefringence of rutile in the infrared. J. Opt. Soc. Am. 51, 1309–1310 (1961).

    Article  Google Scholar 

  7. Kats, M. A. et al. Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy. Proc. Natl Acad. Sci. USA 109, 12364–12368 (2012).

    Article  ADS  Google Scholar 

  8. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article  ADS  Google Scholar 

  9. Larouche, S., Tsai, Y.-J., Tyler, T., Jokerst, N. M. & Smith, D. R. Infrared metamaterial phase holograms. Nat. Mater. 11, 450–454 (2012).

    Article  ADS  Google Scholar 

  10. Yang, S.-H., Cooper, M. L., Bandaru, P. R. & Mookherjea, S. Giant birefringence in multi-slotted silicon nanophotonic waveguides. Opt. Express 16, 8306–8316 (2008).

    Article  ADS  Google Scholar 

  11. Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012).

    Article  ADS  Google Scholar 

  12. Luo, H. T., Tkaczyk, T., Dereniak, E. L., Oka, K. & Sampson, R. High birefringence of the yttrium vanadate crystal in the middle wavelength infrared. Opt. Lett. 31, 616–618 (2006).

    Article  ADS  Google Scholar 

  13. Zelmon, D. E., Small, D. L. & Jundt, D. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide–doped lithium niobate. J. Opt. Soc. Am. B 14, 3319–3322 (1997).

    Article  ADS  Google Scholar 

  14. Guoqing, Z. et al. Growth and spectrum of a novel birefringent α-BaB2O4 crystal. J. Cryst. Growth 191, 517–519 (1998).

    Article  ADS  Google Scholar 

  15. Chenault, D. B. & Chipman, R. A. Infrared birefringence spectra for cadmium sulfide and cadmium selenide. Appl. Opt. 32, 4223–4227 (1993).

    Article  ADS  Google Scholar 

  16. Dodge, M. J. Refractive properties of magnesium fluoride. Appl. Opt. 23, 1980–1985 (1984).

    Article  ADS  Google Scholar 

  17. Sekine, C., Iwakura, K., Konya, N., Minai, M. & Fujisawa, K. Synthesis and properties of some novel high birefringence phenylacetylene liquid crystal materials with lateral substituents. Liq. Cryst. 28, 1375–1387 (2001).

    Article  Google Scholar 

  18. Herman, J. & Kula, P. Design of new super-high birefringent isothiocyanato bistolanes—synthesis and properties. Liq. Cryst. 44, 1462–1467 (2017).

    Article  Google Scholar 

  19. Węgłowska, D., Kula, P. & Herman, J. High birefringence bistolane liquid crystals: synthesis and properties. RSC Adv. 6, 403–408 (2016).

    Article  ADS  Google Scholar 

  20. Zhang, H. et al. Na3Ba2(B3O6)2F: next generation of deep-ultraviolet birefringent materials. Cryst. Growth Des. 15, 523–529 (2014).

    Article  Google Scholar 

  21. Jia, Z. et al. Top-seeded solution growth and optical properties of deep-UV birefringent crystal Ba2Ca(B3O6)2. Cryst. Growth Des. 17, 558–562 (2017).

    Article  Google Scholar 

  22. Zhang, W., Liu, J., Huang, W.-P. & Zhao, W. Giant birefringence of periodic dielectric waveguides. IEEE Photonics J. 3, 512–520 (2011).

    Article  ADS  Google Scholar 

  23. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    Article  ADS  Google Scholar 

  24. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7, 699–712 (2012).

    Article  ADS  Google Scholar 

  25. Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014).

    Article  ADS  Google Scholar 

  26. Wang, X. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotech. 10, 517–521 (2015).

    Article  ADS  Google Scholar 

  27. Mao, N. et al. Optical anisotropy of black phosphorus in the visible regime. J. Am. Chem. Soc. 138, 300–305 (2016).

    Article  Google Scholar 

  28. Liao, B. et al. Spatial-temporal imaging of anisotropic photocarrier dynamics in black phosphorus. Nano Lett. 17, 3675–3680 (2017).

    Article  ADS  Google Scholar 

  29. Iio, K., Hyodo, H. & Nagata, K. Observations of short-range order by optical birefringence in one-dimensional antiferromagnets CsNiCl3, RbNiCl3 and CsCoCl3. J. Phys. Soc. Jpn 49, 1336–1343 (1980).

    Article  ADS  Google Scholar 

  30. Rumble, J. (ed.) CRC Handbook of Chemistry and Physics 98th edn (CRC Press, Boca Raton, 2017).

  31. Huang, X., Paudel, T. R., Dong, S. & Tsymbal, E. Y. Hexagonal rare-earth manganites as promising photovoltaics and light polarizers. Phys. Rev. B 92, 125201 (2015).

    Article  ADS  Google Scholar 

  32. Hahn, H. & Mutschke, U. Untersuchungen über ternäre Chalkogenide. XI. Versuche zur Darstellung von Thioperowskiten. Z. Anorg. Allg. Chem. 288, 269–278 (1957).

    Article  Google Scholar 

  33. Clearfield, A. The synthesis and crystal structures of some alkaline earth titanium and zirconium sulfides. Acta Cryst. 16, 135–142 (1963).

    Article  Google Scholar 

  34. Huster, J. Die Kristallstruktur von BaTiS3. Z. Naturforsch. B 35, 775 (1980).

  35. Nikogosyan, D. N. Nonlinear Optical Crystals: A Complete Survey (Springer-Verlag, New York, 2005).

  36. Niu, S. et al. Bandgap control via structural and chemical tuning of transition metal perovskite chalcogenides. Adv. Mater. 29, 1604733 (2017).

    Article  Google Scholar 

  37. Singh, D. J. & Nordstrom, L. (eds) Planewaves, Pseudopotentials, and the LAPW Method (Springer, New York, 2006).

  38. Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D. & Luitz, J. WIEN2k, An Augmented Plane Wave + Local Orbitals Program For Calculating Crystal Properties (Technische Univ. Wien, Vienna, 2001).

  39. Tran, F. & Blaha, P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank A. R. Tanguay and A. Madhukar for discussions, and technical assistance by T. Aoki and N. Bozdin. J.R. acknowledges USC Viterbi School of Engineering Startup Funds and support from the Air Force Office of Scientific Research under award no. FA9550-16-1-0335. S.N. acknowledges Link Foundation Energy Fellowship. M.A.K. acknowledges support from the Office of Naval Research (grant no. N00014-16-1-2556). H.W. acknowledges support from the Army Research Office (grant no. W911NF-16-1-0435) and National Science Foundation (grant no. ECCS-1653870). Work at the University of Missouri (D.J.S.) was supported by the Department of Energy, Basic Energy Sciences through the Solid-State Solar Thermal Energy Conversion Center, an Energy Frontier Research Center, under award no. DE-SC0001299/DE-FG02-09ER46577. S.B.C. acknowledges support from the Department of Energy under award no. DE-FG02–07ER46376. The studies at Air Force Research Laboratory were supported by the Air Force Office of Scientific Research under award no. FA9550-15RXCOR198. The authors acknowledge the use of facilities at the Center for Electron Microscopy and Microanalysis at the University of Southern California and the Irvine Materials Research Institute at the University of California, Irvine.

Author information

Authors and Affiliations

Authors

Contributions

J.R. conceived and supervised the research with M.A.K. M.A.K. identified the large optical anisotropy. H.W. supervised the Raman and infrared spectroscopy studies. S.N., Y.Z. and H.H. built the apparatus and grew the crystals. S.N., Y.L. and T.O. performed structural and chemical characterizations. R.H. contributed single-crystal X-ray diffraction measurements. M.M., K.M., B.U. and B.M.H. contributed TEM studies. S.N., H.Z. and J.W. studied the Raman response. G.J., H.Z. and J.S. performed infrared spectroscopy. G.J. and T.E.T. performed ellipsometry studies. D.J.S. contributed theoretical calculations. All authors discussed the results. S.N., M.A.K. and J.R. wrote the manuscript with contributions from all authors.

Corresponding authors

Correspondence to Han Wang, Mikhail A. Kats or Jayakanth Ravichandran.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes and figures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, S., Joe, G., Zhao, H. et al. Giant optical anisotropy in a quasi-one-dimensional crystal. Nat. Photon. 12, 392–396 (2018). https://doi.org/10.1038/s41566-018-0189-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-018-0189-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing