Optical anisotropy is a fundamental building block for linear and nonlinear optical components such as polarizers, wave plates, and phase-matching elements1,2,3,4. In solid homogeneous materials, the strongest optical anisotropy is found in crystals such as calcite and rutile5,6. Attempts to enhance anisotropic light–matter interaction often rely on artificial anisotropic micro/nanostructures (form birefringence)7,8,9,10,11. Here, we demonstrate rationally designed, giant optical anisotropy in single crystals of barium titanium sulfide (BaTiS3). This material shows an unprecedented, broadband birefringence of up to 0.76 in the mid- to long-wave infrared, as well as a large dichroism window with absorption edges at 1.6 μm and 4.5 μm for light with polarization along two crystallographic axes on an easily accessible cleavage plane. The unusually large anisotropy is a result of the quasi-one-dimensional structure, combined with rational selection of the constituent ions to maximize the polarizability difference along different axes.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Yasuno, Y., Makita, S., Sutoh, Y., Itoh, M. & Yatagai, T. Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography. Opt. Lett. 27, 1803–1805 (2002).

  2. 2.

    Weber, M. F. Giant birefringent optics in multilayer polymer mirrors. Science 287, 2451–2456 (2000).

  3. 3.

    Oka, K. & Kaneko, T. Compact complete imaging polarimeter using birefringent wedge prisms. Opt. Express 11, 1510–1519 (2003).

  4. 4.

    Nicholls, L. H. et al. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials. Nat. Photon. 11, 628–633 (2017).

  5. 5.

    Ghosh, G. Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals. Opt. Commun. 163, 95–102 (1999).

  6. 6.

    Sinton, W. M. Birefringence of rutile in the infrared. J. Opt. Soc. Am. 51, 1309–1310 (1961).

  7. 7.

    Kats, M. A. et al. Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy. Proc. Natl Acad. Sci. USA 109, 12364–12368 (2012).

  8. 8.

    Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

  9. 9.

    Larouche, S., Tsai, Y.-J., Tyler, T., Jokerst, N. M. & Smith, D. R. Infrared metamaterial phase holograms. Nat. Mater. 11, 450–454 (2012).

  10. 10.

    Yang, S.-H., Cooper, M. L., Bandaru, P. R. & Mookherjea, S. Giant birefringence in multi-slotted silicon nanophotonic waveguides. Opt. Express 16, 8306–8316 (2008).

  11. 11.

    Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012).

  12. 12.

    Luo, H. T., Tkaczyk, T., Dereniak, E. L., Oka, K. & Sampson, R. High birefringence of the yttrium vanadate crystal in the middle wavelength infrared. Opt. Lett. 31, 616–618 (2006).

  13. 13.

    Zelmon, D. E., Small, D. L. & Jundt, D. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide–doped lithium niobate. J. Opt. Soc. Am. B 14, 3319–3322 (1997).

  14. 14.

    Guoqing, Z. et al. Growth and spectrum of a novel birefringent α-BaB2O4 crystal. J. Cryst. Growth 191, 517–519 (1998).

  15. 15.

    Chenault, D. B. & Chipman, R. A. Infrared birefringence spectra for cadmium sulfide and cadmium selenide. Appl. Opt. 32, 4223–4227 (1993).

  16. 16.

    Dodge, M. J. Refractive properties of magnesium fluoride. Appl. Opt. 23, 1980–1985 (1984).

  17. 17.

    Sekine, C., Iwakura, K., Konya, N., Minai, M. & Fujisawa, K. Synthesis and properties of some novel high birefringence phenylacetylene liquid crystal materials with lateral substituents. Liq. Cryst. 28, 1375–1387 (2001).

  18. 18.

    Herman, J. & Kula, P. Design of new super-high birefringent isothiocyanato bistolanes—synthesis and properties. Liq. Cryst. 44, 1462–1467 (2017).

  19. 19.

    Węgłowska, D., Kula, P. & Herman, J. High birefringence bistolane liquid crystals: synthesis and properties. RSC Adv. 6, 403–408 (2016).

  20. 20.

    Zhang, H. et al. Na3Ba2(B3O6)2F: next generation of deep-ultraviolet birefringent materials. Cryst. Growth Des. 15, 523–529 (2014).

  21. 21.

    Jia, Z. et al. Top-seeded solution growth and optical properties of deep-UV birefringent crystal Ba2Ca(B3O6)2. Cryst. Growth Des. 17, 558–562 (2017).

  22. 22.

    Zhang, W., Liu, J., Huang, W.-P. & Zhao, W. Giant birefringence of periodic dielectric waveguides. IEEE Photonics J. 3, 512–520 (2011).

  23. 23.

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

  24. 24.

    Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7, 699–712 (2012).

  25. 25.

    Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014).

  26. 26.

    Wang, X. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotech. 10, 517–521 (2015).

  27. 27.

    Mao, N. et al. Optical anisotropy of black phosphorus in the visible regime. J. Am. Chem. Soc. 138, 300–305 (2016).

  28. 28.

    Liao, B. et al. Spatial-temporal imaging of anisotropic photocarrier dynamics in black phosphorus. Nano Lett. 17, 3675–3680 (2017).

  29. 29.

    Iio, K., Hyodo, H. & Nagata, K. Observations of short-range order by optical birefringence in one-dimensional antiferromagnets CsNiCl3, RbNiCl3 and CsCoCl3. J. Phys. Soc. Jpn 49, 1336–1343 (1980).

  30. 30.

    Rumble, J. (ed.) CRC Handbook of Chemistry and Physics 98th edn (CRC Press, Boca Raton, 2017).

  31. 31.

    Huang, X., Paudel, T. R., Dong, S. & Tsymbal, E. Y. Hexagonal rare-earth manganites as promising photovoltaics and light polarizers. Phys. Rev. B 92, 125201 (2015).

  32. 32.

    Hahn, H. & Mutschke, U. Untersuchungen über ternäre Chalkogenide. XI. Versuche zur Darstellung von Thioperowskiten. Z. Anorg. Allg. Chem. 288, 269–278 (1957).

  33. 33.

    Clearfield, A. The synthesis and crystal structures of some alkaline earth titanium and zirconium sulfides. Acta Cryst. 16, 135–142 (1963).

  34. 34.

    Huster, J. Die Kristallstruktur von BaTiS3. Z. Naturforsch. B 35, 775 (1980).

  35. 35.

    Nikogosyan, D. N. Nonlinear Optical Crystals: A Complete Survey (Springer-Verlag, New York, 2005).

  36. 36.

    Niu, S. et al. Bandgap control via structural and chemical tuning of transition metal perovskite chalcogenides. Adv. Mater. 29, 1604733 (2017).

  37. 37.

    Singh, D. J. & Nordstrom, L. (eds) Planewaves, Pseudopotentials, and the LAPW Method (Springer, New York, 2006).

  38. 38.

    Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D. & Luitz, J. WIEN2k, An Augmented Plane Wave + Local Orbitals Program For Calculating Crystal Properties (Technische Univ. Wien, Vienna, 2001).

  39. 39.

    Tran, F. & Blaha, P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009).

Download references


The authors thank A. R. Tanguay and A. Madhukar for discussions, and technical assistance by T. Aoki and N. Bozdin. J.R. acknowledges USC Viterbi School of Engineering Startup Funds and support from the Air Force Office of Scientific Research under award no. FA9550-16-1-0335. S.N. acknowledges Link Foundation Energy Fellowship. M.A.K. acknowledges support from the Office of Naval Research (grant no. N00014-16-1-2556). H.W. acknowledges support from the Army Research Office (grant no. W911NF-16-1-0435) and National Science Foundation (grant no. ECCS-1653870). Work at the University of Missouri (D.J.S.) was supported by the Department of Energy, Basic Energy Sciences through the Solid-State Solar Thermal Energy Conversion Center, an Energy Frontier Research Center, under award no. DE-SC0001299/DE-FG02-09ER46577. S.B.C. acknowledges support from the Department of Energy under award no. DE-FG02–07ER46376. The studies at Air Force Research Laboratory were supported by the Air Force Office of Scientific Research under award no. FA9550-15RXCOR198. The authors acknowledge the use of facilities at the Center for Electron Microscopy and Microanalysis at the University of Southern California and the Irvine Materials Research Institute at the University of California, Irvine.

Author information

Author notes

  1. These authors contributed equally: Shanyuan Niu, Graham Joe, Huan Zhao.


  1. Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA

    • Shanyuan Niu
    • , Yucheng Zhou
    • , Thomas Orvis
    • , Huaixun Huyan
    • , Yang Liu
    • , Han Wang
    •  & Jayakanth Ravichandran
  2. Department of Electrical and Computer Engineering, University of Wisconsin–Madison, Madison, WI, USA

    • Graham Joe
    • , Jad Salman
    •  & Mikhail A. Kats
  3. Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA

    • Huan Zhao
    • , Jiangbin Wu
    • , Stephen B. Cronin
    • , Han Wang
    •  & Jayakanth Ravichandran
  4. Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, USA

    • Krishnamurthy Mahalingam
    • , Brittany Urwin
    •  & Brandon M. Howe
  5. J. A. Woollam Co. Inc., Lincoln, NE, USA

    • Thomas E. Tiwald
  6. Center for Electron Microscopy and Microanalysis, University of Southern California, Los Angeles, CA, USA

    • Matthew Mecklenburg
  7. Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, CA, USA

    • Ralf Haiges
  8. Department of Physics and Astronomy, University of Missouri, Columbia, MO, USA

    • David J. Singh


  1. Search for Shanyuan Niu in:

  2. Search for Graham Joe in:

  3. Search for Huan Zhao in:

  4. Search for Yucheng Zhou in:

  5. Search for Thomas Orvis in:

  6. Search for Huaixun Huyan in:

  7. Search for Jad Salman in:

  8. Search for Krishnamurthy Mahalingam in:

  9. Search for Brittany Urwin in:

  10. Search for Jiangbin Wu in:

  11. Search for Yang Liu in:

  12. Search for Thomas E. Tiwald in:

  13. Search for Stephen B. Cronin in:

  14. Search for Brandon M. Howe in:

  15. Search for Matthew Mecklenburg in:

  16. Search for Ralf Haiges in:

  17. Search for David J. Singh in:

  18. Search for Han Wang in:

  19. Search for Mikhail A. Kats in:

  20. Search for Jayakanth Ravichandran in:


J.R. conceived and supervised the research with M.A.K. M.A.K. identified the large optical anisotropy. H.W. supervised the Raman and infrared spectroscopy studies. S.N., Y.Z. and H.H. built the apparatus and grew the crystals. S.N., Y.L. and T.O. performed structural and chemical characterizations. R.H. contributed single-crystal X-ray diffraction measurements. M.M., K.M., B.U. and B.M.H. contributed TEM studies. S.N., H.Z. and J.W. studied the Raman response. G.J., H.Z. and J.S. performed infrared spectroscopy. G.J. and T.E.T. performed ellipsometry studies. D.J.S. contributed theoretical calculations. All authors discussed the results. S.N., M.A.K. and J.R. wrote the manuscript with contributions from all authors.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Han Wang or Mikhail A. Kats or Jayakanth Ravichandran.

Supplementary information

  1. Supplementary Information

    Supplementary notes and figures.

About this article

Publication history






Further reading