Topological protection of photonic mid-gap defect modes

Abstract

Defect modes in two-dimensional periodic photonic structures have found use in diverse optical devices. For example, photonic crystal cavities confine optical modes to subwavelength volumes and can be used for enhancement of nonlinearity, lasing and cavity quantum electrodynamics. Defect-core photonic crystal fibres allow for supercontinuum generation and endlessly single-mode fibres with large cores. However, these modes are notoriously fragile: small structural change leads to significant detuning of resonance frequency and mode volume. Here, we show that photonic topological crystalline insulator structures can be used to topologically protect the mode frequency at mid-gap and minimize the volume of a photonic defect mode. We experimentally demonstrate this in a femtosecond-laser-written waveguide array by observing the presence of a topological zero mode confined to the corner of the array. The robustness of this mode is guaranteed by a topological invariant that protects zero-dimensional states embedded in a two-dimensional environment—a novel form of topological protection that has not been previously demonstrated.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: C6 symmetric photonic lattices and band structures.
Fig. 2: Numerically calculated density of states (DOS) and eigenmode local density of states (LDOS) of the bulk, edge and corner modes using the tight-binding approximation for hexagonally shaped lattices (that is, with full open boundaries).
Fig. 3: Experimentally measured diffracted light at the output facet at different wavelengths.
Fig. 4: Direct excitation of the zero mode using an auxiliary waveguide weakly coupled to the system.
Fig. 5: Measurements of light intensity at the corner waveguides of the output facet in the topological phase and estimation of its beating frequencies as a function of wavelength.

References

  1. 1.

    Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    ADS  Article  Google Scholar 

  2. 2.

    Ozawa, T. et al. Topological photonics. Preprint at http://arXiv.org/abs/1802.04173 (2018).

  3. 3.

    Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    ADS  Article  Google Scholar 

  4. 4.

    Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    ADS  Article  Google Scholar 

  5. 5.

    Umucalılar, R. O. & Carusotto, I. Artificial gauge field for photons in coupled cavity arrays. Phys. Rev. A 84, 043804 (2011).

    ADS  Article  Google Scholar 

  6. 6.

    Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011).

    Article  Google Scholar 

  7. 7.

    Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6, 782–787 (2012).

    ADS  Article  Google Scholar 

  8. 8.

    Rechtsman, M. C. et al. Photonic Floquet topological insulator. Nature 496, 196–200 (2013).

    ADS  Article  Google Scholar 

  9. 9.

    Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

    ADS  Article  Google Scholar 

  10. 10.

    Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013).

    ADS  Article  Google Scholar 

  11. 11.

    Wu, L.-H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015).

    ADS  Article  Google Scholar 

  12. 12.

    von Klitzing, K., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    ADS  Article  Google Scholar 

  13. 13.

    Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

    ADS  Article  Google Scholar 

  14. 14.

    Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    ADS  Article  Google Scholar 

  15. 15.

    Kane, C. L. & Mele, E. J. Z 2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    ADS  Article  Google Scholar 

  16. 16.

    Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    ADS  Article  Google Scholar 

  17. 17.

    König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    ADS  Article  Google Scholar 

  18. 18.

    Harari, G. et al. Topological insulator laser: theory. Science 359, eaar4003 (2018).

    Article  Google Scholar 

  19. 19.

    Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

    Article  Google Scholar 

  20. 20.

    Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).

    ADS  Article  Google Scholar 

  21. 21.

    Shockley, W. On the surface states associated with a periodic potential. Phys. Rev. 56, 317–323 (1939).

    ADS  Article  MATH  Google Scholar 

  22. 22.

    Malkova, N., Hromada, I., Wang, X., Bryant, G. & Chen, Z. Transition between Tamm-like and Shockley-like surface states in optically induced photonic superlattices. Phys. Rev. A 80, 043806 (2009).

    ADS  Article  Google Scholar 

  23. 23.

    Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).

    ADS  Article  Google Scholar 

  24. 24.

    Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys. Usp. 44, 131–136 (2001).

    ADS  Article  Google Scholar 

  25. 25.

    Fefferman, C. L., Lee-Thorp, J. P. & Weinstein, M. I. Topologically protected states in one-dimensional continuous systems and Dirac points. Proc. Natl Acad. Sci. USA 111, 8759–8763 (2014).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Poli, C., Bellec, M., Kuhl, U., Mortessagne, F. & Schomerus, H. Selective enhancement of topologically induced interface states in a dielectric resonator chain. Nat. Commun. 6, 6710 (2015).

    ADS  Article  Google Scholar 

  27. 27.

    Slobozhanyuk, A. P., Poddubny, A. N., Miroshnichenko, A. E., Belov, P. A. & Kivshar, Y. S. Subwavelength topological edge states in optically resonant dielectric structures. Phys. Rev. Lett. 114, 123901 (2015).

    ADS  Article  Google Scholar 

  28. 28.

    Blanco-Redondo, A. et al. Topological optical waveguiding in silicon and the transition between topological and trivial defect states. Phys. Rev. Lett. 116, 163901 (2016).

    ADS  Article  Google Scholar 

  29. 29.

    Iadecola, T., Schuster, T. & Chamon, C. Non-Abelian braiding of light. Phys. Rev. Lett. 117, 073901 (2016).

    ADS  Article  Google Scholar 

  30. 30.

    Asbóth, J. K., Oroszlány, L. & Pályi, A. Lecture Notes in Physics Vol. 919 (Springer Verlag, Berlin, 2016).

  31. 31.

    Mondragon-Shem, I., Hughes, T. L., Song, J. & Prodan, E. Topological criticality in the chiral-symmetric AIII class at strong disorder. Phys. Rev. Lett. 113, 046802 (2014).

    ADS  Article  Google Scholar 

  32. 32.

    Teo, J. C. Y. & Hughes, T. L. Existence of Majorana-fermion bound states on disclinations and the classification of topological crystalline superconductors in two dimensions. Phys. Rev. Lett. 111, 047006 (2013).

    ADS  Article  Google Scholar 

  33. 33.

    Benalcazar, W. A., Teo, J. C. Y. & Hughes, T. L. Classification of two-dimensional topological crystalline superconductors and majorana bound states at disclinations. Phys. Rev. B 89, 224503 (2014).

    ADS  Article  Google Scholar 

  34. 34.

    Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Science 357, 61–66 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  35. 35.

    Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators. Phys. Rev. B 96, 245115 (2017).

    ADS  Article  Google Scholar 

  36. 36.

    Englund, D. et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 013904 (2005).

    ADS  Article  Google Scholar 

  37. 37.

    Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999).

    Article  Google Scholar 

  38. 38.

    Russell, P. Photonic crystal fibers. Science 299, 358–362 (2003).

    ADS  Article  Google Scholar 

  39. 39.

    Liberal, I., Mahmoud, A. M. & Engheta, N. Geometry-invariant resonant cavities. Nat. Commun. 7, 10989 (2016).

    ADS  Article  Google Scholar 

  40. 40.

    Poli, C., Schomerus, H., Bellec, M., Kuhl, U. & Mortessagne, F. Partial chiral symmetry-breaking as a route to spectrally isolated topological defect states in two-dimensional artificial materials. 2D Mater. 4, 025008 (2017).

    Article  Google Scholar 

  41. 41.

    Szameit, A. et al. Discrete nonlinear localization in femtosecond laser written waveguides in fused silica. Opt. Express 13, 10552–10557 (2005).

    ADS  Article  Google Scholar 

  42. 42.

    Kariyado, T. & Hu, X. Topological states characterized by mirror winding numbers in graphene with bond modulation. Sci. Rep. 7, 16515 (2017).

    ADS  Article  Google Scholar 

  43. 43.

    Altland, A. & Zirnbauer, M. R. Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B 55, 1142–1161 (1997).

    ADS  Article  Google Scholar 

  44. 44.

    Schnyder, A. P., Ryu, S., Furusaki, A. & Ludwig, A. W. W. Classification of topological insulators and superconductors. AIP Conf. Proc. 1134, 10–21 (2009).

    ADS  Article  MATH  Google Scholar 

  45. 45.

    Teo, J. C. Y. & Kane, C. L. Topological defects and gapless modes in insulators and superconductors. Phys. Rev. B 82, 115120 (2010).

    ADS  Article  Google Scholar 

  46. 46.

    Keil, R. et al. Universal sign control of coupling in tight-binding lattices. Phys. Rev. Lett. 116, 213901 (2016).

    ADS  Article  Google Scholar 

  47. 47.

    Stützer, S. et al. Experimental realization of a topological Anderson insulator. In 2015 Conference on Lasers and Electro-Optics (CLEO) 1–2 (IEEE, 2015).

Download references

Acknowledgements

W.A.B. and T.L.H. are supported by the Office of Naval Research Young Investigator Program Award N00014-15-1-2383. M.C.R. acknowledges support from the National Science Foundation under grant number ECCS-1509546 and the Penn State Materials Research Science and Engineering Center, DMR-1420620 as well as from the Alfred P. Sloan Foundation under fellowship number FG-2016-6418. K.P.C. acknowledges the National Science Foundation under grant numbers ECCS-1509199 and DMS-1620218.

Author information

Affiliations

Authors

Contributions

J.N. built the experimental probing station (with assistance from M.J.C.), performed the experimental measurements, numerical simulations and data analysis under the guidance of M.C.R. S.H. developed the laser fabrication process and characterized the samples under the supervision of K.P.C. and M.C.R. W.A.B. proposed the model and provided theoretical analysis and simulations. T.L.H. provided theoretical analysis. J.N., W.A.B., T.L.H. and M.C.R. wrote the paper. M.C.R. supervised the project.

Corresponding author

Correspondence to Mikael C. Rechtsman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion; Supplementary Figures 1–8; Supplementary references 1–3. [In this file initially published, some characters did not display properly; this file has now been replaced.]

Supplementary Video 1

Excitation of zero mode.

Supplementary Video 2

Beating of two modes as wavelength is swept.

Supplementary Video 3

Injection of light at the corner.

Supplementary Video 4

Response due to detuning of refractive index at corner.

Supplementary Video 5

Response due to detuning of wavelength at corner.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Noh, J., Benalcazar, W.A., Huang, S. et al. Topological protection of photonic mid-gap defect modes. Nature Photon 12, 408–415 (2018). https://doi.org/10.1038/s41566-018-0179-3

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing