Efficient photon upconversion at low light intensities promises major advances in technologies spanning solar energy harvesting to deep-tissue biophotonics. Here, we discover the critical mechanisms that enable near-infrared dye antennas to significantly enhance performance in lanthanide-doped upconverting nanoparticle (UCNP) systems, and leverage these findings to design dye–UCNP hybrids with a 33,000-fold increase in brightness and a 100-fold increase in efficiency over bare UCNPs. We show that increasing the lanthanide content in the UCNPs shifts the primary energy donor from the dye singlet to its triplet, and the resultant triplet states then mediate energy transfer into the nanocrystals. Time-gated phosphorescence, density functional theory, singlet lifetimes and triplet-quenching experiments support these findings. This interplay between the excited-state populations in organic antennas and the composition of UCNPs presents new design rules that overcome the limitations of previous upconverting materials, enabling performances now relevant for photovoltaics, biophotonics and infrared detection.

  • Subscribe to Nature Photonics for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Zou, W., Visser, C., Maduro, J. A., Pshenichnikov, M. S. & Hummelen, J. C. Broadband dye-sensitized upconversion of near-infrared light. Nat. Photon. 6, 560–564 (2012).

  2. 2.

    Zhou, B., Shi, B., Jin, D. & Liu, X. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotech. 10, 924–936 (2015).

  3. 3.

    Briggs, J. A., Atre, A. C. & Dionne, J. A. Narrow-bandwidth solar upconversion: case studies of existing systems and generalized fundamental limits. J. Appl. Phys. 113, 124509 (2013).

  4. 4.

    Park, Y. Il, Lee, K. T., Suh, Y. D. & Hyeon, T. Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chem. Soc. Rev. 44, 1302–1317 (2014).

  5. 5.

    Liu, Y. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 543, 229–233 (2017).

  6. 6.

    Wang, C., Li, X. & Zhang, F. Bioapplications and biotechnologies of upconversion nanoparticle-based nanosensors. Analyst. 141, 3601–3620 (2016).

  7. 7.

    Wu, X. et al. Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano 10, 1060–1066 (2016).

  8. 8.

    Hososhima, S. et al. Near-infrared (NIR) up-conversion optogenetics. Sci. Rep. 5, 16533 (2015).

  9. 9.

    Schmidt, T. W. & Castellano, F. N. Photochemical conversion: the primacy of kinetics. J. Phys. Chem. Lett. 5, 4062–4072 (2014).

  10. 10.

    Schulze, T. F. & Schmidt, T. W. Photochemical upconversion: present status and prospects for its application to solar energy conversion. Energy Environ. Sci. 8, 103–125 (2015).

  11. 11.

    Olivier, J. H. et al. Near-infrared-to-visible photon upconversion enabled by conjugated porphyrinic sensitizers under low-power noncoherent illumination. J. Phys. Chem. A 119, 5642–5649 (2015).

  12. 12.

    Gargas, D. J. et al. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat. Nanotech. 9, 300–305 (2014).

  13. 13.

    Wu, S. et al. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc. Natl Acad. Sci. USA 106, 10917–10921 (2009).

  14. 14.

    Park, Y. Il et al. Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv. Mater. 21, 4467–4471 (2009).

  15. 15.

    Chen, G. et al. Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal. Nano Lett. 15, 7400–7407 (2015).

  16. 16.

    Shao, W. et al. Tunable narrow band emissions from dye-sensitized core/shell/shell nanocrystals in the second near-infrared biological window. J. Am. Chem. Soc. 138, 16191–16195 (2016).

  17. 17.

    Chen, G. et al. Efficient broadband upconversion of near-infrared light in dye-sensitized core/shell nanocrystals. Adv. Opt. Mater. 4, 1760–1766 (2016).

  18. 18.

    Lee, J. et al. Ultra-wideband multi-dye-sensitized upconverting nanoparticles for information security application. Adv. Mater. 29, 1603169 (2017).

  19. 19.

    Du, C., Wang, H., Yang, F. & Hammel, P. C. Systematic variation of spin–orbit coupling with d-orbital filling: large inverse spin Hall effect in 3d transition metals. Phys. Rev. B 90, 140407(R) (2014).

  20. 20.

    Klink, S. I., Keizer, H. & van Veggel, F. C. J. M. Transition metal complexes as photosensitizers for near-infrared lanthanide luminescence. Angew. Chem. Int. Ed. 39, 4319–4321 (2000).

  21. 21.

    Beeby, A., Faulkner, S., Parker, D. & Williams, J. A. G. Sensitised luminescence from phenanthridine appended lanthanide complexes: analysis of triplet mediated energy transfer processes in terbium, europium and neodymium complexes. J. Chem. Soc. Perkin Trans. 2, 1268–1273 (2001).

  22. 22.

    Faulkner, S., Natrajan, L. S., Perry, W. S. & Sykes, D. Sensitised luminescence in lanthanide containing arrays and df hybrids. Dalton Trans. 3890–3899 (2009).

  23. 23.

    Klink, S. I. et al. A systematic study of the photophysical processes in polydentate triphenylene-functionalized Eu3+. J. Phys. Chem. A 104, 5457–5468 (2000).

  24. 24.

    Bunzli, J. G. & Piguet, C. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 34, 1048–1077 (2005).

  25. 25.

    Thompson, N. J. et al. Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals. Nat. Mater. 13, 1039–1043 (2014).

  26. 26.

    Cedric, M., Garakyaraghi, S., Razgoniaeva, N., Zamkov, M. & Castellano, F. N. Direct observation of triplet energy transfer from semiconductor nanocrystals. Science 351, 369–372 (2016).

  27. 27.

    Tabachnyk, M. et al. Resonant energy transfer of triplet excitons from pentacene to PbSe nanocrystals. Nat. Mater. 13, 1033–1038 (2014).

  28. 28.

    Agbo, P., Xu, T., Sturzbecher-Hoehne, M. & Abergel, R. J. Enhanced ultraviolet photon capture in ligand-sensitized nanocrystals. ACS Photon. 3, 547–552 (2016).

  29. 29.

    Huang, Z. et al. Hybrid molecule-nanocrystal photon upconversion across the visible and near-infrared. Nano. Lett. 15, 5552–5557 (2015).

  30. 30.

    Piland, G. B., Huang, Z., Lee Tang, M. & Bardeen, C. J. Dynamics of energy transfer from CdSe nanocrystals to triplet states of anthracene ligand molecules. J. Phys. Chem. C 120, 5883–5889 (2016).

  31. 31.

    Wang, F. et al. Tuning upconversion through energy migration in core–shell nanoparticles. Nat. Mater. 10, 968–973 (2011).

  32. 32.

    Marling, J. B., Gregg, D. W. & Wood, L. Chemical quenching of the triplet state in flashlamp-excited liquid organic lasers. Appl. Phys. Lett. 17, 527–530 (1970).

  33. 33.

    Pappalardo, R., Samelson, H. & Lempicki, A. Long pulse laser emission from rhodamine 6G using cyclooctatetraene. Appl. Phys. Lett. 16, 267–269 (1970).

  34. 34.

    Schols, S., Kadashchuk, A., Heremans, P., Helfer, A. & Scherf, U. Triplet excitation scavenging in films of conjugated polymers. ChemPhysChem 10, 1071–1076 (2009).

  35. 35.

    Schaap, A. P. Singlet Molecular Oxygen (Dowden, Hutchinson, & Ross: Stroudsburg, PA, 1976).

  36. 36.

    Gorka, A. P., Nani, R. R., Zhu, J., Mackem, S. & Schnermann, M. J. A near-IR uncaging strategy based on cyanine photochemistry. J. Am. Chem. Soc. 136, 14153–14159 (2014).

  37. 37.

    Han, Y. et al. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 3, 8139–8147 (2015).

  38. 38.

    Ow, H. et al. Bright and stable core–shell fluorescent silica nanoparticles. Nano Lett. 5, 113–117 (2005).

  39. 39.

    Pokhrel, M., Kumar, G. A. & Sardar, D. K. Highly efficient NIR to NIR and VIS upconversion in Er3+ and Yb3+ doped in M2O2S (M = Gd, La, Y). J. Mater. Chem. A 1, 11595–11606 (2013).

  40. 40.

    Fischer, S., Bronstein, N. D., Swabeck, J. K., Chan, E. M. & Alivisatos, A. P. Precise tuning of surface quenching for luminescence enhancement in core–shell lanthanide-doped nanocrystals. Nano Lett. 16, 7241–7247 (2016).

  41. 41.

    Johnson, N. J. J. et al. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc. 139, 3275–3282 (2017).

  42. 42.

    Chan, E. M., Levy, E. S. & Cohen, B. E. Rationally designed energy transfer in upconverting nanoparticles. Adv. Mater. 27, 5753–5761 (2015).

Download references


The authors thank S. Fischer, K. Raymond and K. Yao for helpful discussions, and T. Chen for her invaluable experimental assistance. This work was supported by the National Science Foundation SAGE IGERT fellowship (to D.J.G.) and the Chinese Scholarship Council fellowship (B.T.). Portions of this research were supported by the Global Research Laboratory (GRL) Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (no. 2016911815). This work was performed at the Molecular Foundry and was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02-05CH11231). The computational work performed here was supported by the Director, Office of Science, Chemical Sciences, Geosciences and Biosciences Division of the US Department of Energy, under contract no. DEAC02-05CH1123.

Author information

Author notes

  1. These authors contributed equally: David J. Garfield, Nicholas J. Borys.


  1. The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

    • David J. Garfield
    • , Nicholas J. Borys
    • , Nicole A. Torquato
    • , Cheryl A. Tajon
    • , Bining Tian
    • , Brian Shevitski
    • , Edward S. Barnard
    • , Shaul Aloni
    • , Jeffrey B. Neaton
    • , Emory M. Chan
    • , Bruce E. Cohen
    •  & P. James Schuck
  2. Department of Chemistry, University of California, Berkeley, CA, USA

    • David J. Garfield
    •  & Samia M. Hamed
  3. Department of Physics, University of California, Berkeley, CA, USA

    • Brian Shevitski
    •  & Jeffrey B. Neaton
  4. Research Center for Convergence NanoRaman Technology, Korea Research Institute of Chemical Technology, DaeJeon, South Korea

    • Yung Doug Suh
  5. School of Chemical Engineering, Sung Kyun Kwan University (SKKU), Suwon, Korea

    • Yung Doug Suh
  6. Kavli Energy NanoSciences Institute at Berkeley, Berkeley, CA, USA

    • Jeffrey B. Neaton
  7. Department of Mechanical Engineering, Columbia University, New York, NY, USA

    • P. James Schuck


  1. Search for David J. Garfield in:

  2. Search for Nicholas J. Borys in:

  3. Search for Samia M. Hamed in:

  4. Search for Nicole A. Torquato in:

  5. Search for Cheryl A. Tajon in:

  6. Search for Bining Tian in:

  7. Search for Brian Shevitski in:

  8. Search for Edward S. Barnard in:

  9. Search for Yung Doug Suh in:

  10. Search for Shaul Aloni in:

  11. Search for Jeffrey B. Neaton in:

  12. Search for Emory M. Chan in:

  13. Search for Bruce E. Cohen in:

  14. Search for P. James Schuck in:


The scientific concepts, ideas and experimental designs were the result of interactions and discussions between D.J.G., P.J.S., B.E.C., N.J.B., E.M.C. and Y.D.S. D.J.G., E.M.C., N.A.T., C.A.T. and B.T. synthesized the nanoparticles. D.J.G., N.J.B. and E.S.B. conducted the spectroscopic measurements. D.J.G. and E.M.C. conducted the QY measurements. S.M.H. and J.B.N. performed the theoretical modelling. B.S. and S.A. conducted the electron microscopy. D.J.G., N.J.B., E.M.C., B.E.C. and P.J.S. wrote the paper, in coordination with all the authors.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Emory M. Chan or Bruce E. Cohen or P. James Schuck.

Supplementary information

  1. Supplementary Information

    Supplementary Methods; Supplementary Figures 1–16; Supplementary Table 1; Supplementary discussion; and Supplementary references.

About this article

Publication history






Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.