Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Silicon Mie resonators for highly directional light emission from monolayer MoS2


Controlling light emission from quantum emitters has important applications, ranging from solid-state lighting and displays to nanoscale single-photon sources. Optical antennas have emerged as promising tools to achieve such control right at the location of the emitter, without the need for bulky, external optics. Semiconductor nanoantennas are particularly practical for this purpose because simple geometries such as wires and spheres support multiple, degenerate optical resonances. Here, we start by modifying Mie scattering theory developed for plane wave illumination to describe scattering of dipole emission. We then use this theory and experiments to demonstrate several pathways to achieve control over the directionality, polarization state and spectral emission that rely on a coherent coupling of an emitting dipole to optical resonances of a silicon nanowire. A forward-to-backward ratio of 20 was demonstrated for the electric dipole emission at 680 nm from a monolayer MoS2 by optically coupling it to a silicon nanowire.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Scattering behaviour of a silicon nanowire under plane wave and dipole excitations.
Fig. 2: Experimental demonstration of highly directional emission in fluorescence images.
Fig. 3: Analysis of directionality mechanisms and experimental demonstration of the second mechanism.
Fig. 4: Spectral control over the emission wavelength with nanowire size.


  1. 1.

    Novotny, L. & van Hulst, N. Antennas for light. Nat. Photon. 5, 83–90 (2011).

    ADS  Article  Google Scholar 

  2. 2.

    Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Lukyanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).

    Article  Google Scholar 

  3. 3.

    Schuller, J., Zia, R., Taubner, T. & Brongersma, M. L. Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles. Phys. Rev. Lett. 99, 107401 (2007).

    ADS  Article  Google Scholar 

  4. 4.

    Cao, L. et al. Engineering light absorption in semiconductor nanowire devices. Nat. Mater. 8, 643–647 (2009).

    ADS  Article  Google Scholar 

  5. 5.

    van de Groep, J. & Polman, A. Designing dielectric resonators on substrates: combining magnetic and electric resonances. Opt. Express 21, 1253–1257 (2013).

    Google Scholar 

  6. 6.

    Spinelli, P., Verschuuren, M. A. & Polman, A. Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nat. Commun. 3, 692 (2012).

    ADS  Article  Google Scholar 

  7. 7.

    Staude, I. et al. Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles. ACS Photon. 2, 172–177 (2015).

    Article  Google Scholar 

  8. 8.

    Paniagua-Domínguez, R. et al. Generalized Brewster effect in dielectric metasurfaces. Nat. Commun. 7, 10362 (2016).

    ADS  Article  Google Scholar 

  9. 9.

    Grzela, G. et al. Nanowire antenna emission. Nano Lett. 12, 5481–5486 (2012).

    ADS  Article  Google Scholar 

  10. 10.

    Paniagua-Domínguez, R., Grzela, G., Rivas, J. G. & Sánchez-Gil, J. A. Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes. Nanoscale 5, 10582–10590 (2013).

    ADS  Article  Google Scholar 

  11. 11.

    Staude, I. et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 7, 7824–7832 (2013).

    Article  Google Scholar 

  12. 12.

    Sautter, J. et al. Active tuning of all-dielectric metasurfaces. ACS Nano 9, 4308–4315 (2015).

    Article  Google Scholar 

  13. 13.

    Cao, L. et al. Semiconductor nanowire optical antenna solar absorbers. Nano Lett. 10, 439–445 (2010).

    ADS  Article  Google Scholar 

  14. 14.

    Person, S. et al. Demonstration of zero optical backscattering from single nanoparticles. Nano Lett. 13, 1806–1809 (2013).

    ADS  Article  Google Scholar 

  15. 15.

    Kerker, M., Wang, D. & Giles, C. L. Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 73, 765–767 (1983).

    ADS  Article  Google Scholar 

  16. 16.

    Geffrin, J. M. et al. Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nat. Commun. 3, 1171 (2012).

    Article  Google Scholar 

  17. 17.

    Wiecha, P. R. et al. Strongly directional scattering from dielectric nanowires. ACS Photon. 4, 2036–2046 (2017).

    Article  Google Scholar 

  18. 18.

    Fu, Y. H., Kuznetsov, A. I., Miroshnichenko, A. E., Yu, Y. F. & Luk’yanchuk, B. Directional visible light scattering by silicon nanoparticles. Nat. Commun. 4, 1527 (2013).

    Article  Google Scholar 

  19. 19.

    Atakaramians, S. et al. Strong magnetic response of optical nanofibers. ACS Photon. 3, 972–978 (2016).

    Article  Google Scholar 

  20. 20.

    Ma, X. et al. Solitary oxygen dopant emission from carbon. ACS Nano 11, 6431–6439 (2017).

    Article  Google Scholar 

  21. 21.

    Wierer, J. J., David, A. & Megens, M. M. iii-nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nat. Photon. 3, 163–169 (2009).

    ADS  Article  Google Scholar 

  22. 22.

    Noda, S., Fujita, M. & Asano, T. Spontaneous-emission control by photonic crystals and nanocavities. Nat. Photon. 1, 449–458 (2007).

    ADS  Article  Google Scholar 

  23. 23.

    Fontana, Y., Grzela, G., Bakkers, E. P. A. M. & Rivas, J. G. Mapping the directional emission of quasi-two-dimensional photonic crystals of semiconductor nanowires using Fourier microscopy. Phys. Rev. B 86, 245303 (2012).

    ADS  Article  Google Scholar 

  24. 24.

    Kaniber, M. et al. Highly efficient single-photon emission from single quantum dots within a two-dimensional photonic band-gap. Phys. Rev. B 77, 073312 (2008).

    ADS  Article  Google Scholar 

  25. 25.

    Peter, M. et al. Directional emission from dielectric leaky-wave nanoantennas. Nano Lett. 17, 4178–4183 (2017).

    ADS  Article  Google Scholar 

  26. 26.

    Chen, H. et al. Enhanced directional emission from monolayer WSe2 integrated onto a multi-resonant silicon-based photonic structure. ACS Photon. 4, 3031–3038 (2017).

    Article  Google Scholar 

  27. 27.

    Chu, X.-L. et al. Experimental realization of an optical antenna designed for collecting 99% of photons from a quantum emitter. Optica 1, 203–208 (2014).

    Article  Google Scholar 

  28. 28.

    Checcucci, S. et al. Beaming light from a quantum emitter with a planar optical antenna. Light Sci. Appl. 6, e16245 (2017).

    Article  Google Scholar 

  29. 29.

    Tong, L., Pakizeh, T., Feuz, L. & Dmitriev, A. Highly directional bottom-up 3D nanoantenna for visible light. Sci. Rep. 3, 2311 (2013).

    ADS  Article  Google Scholar 

  30. 30.

    Shegai, T. et al. Unidirectional broadband light emission from supported plasmonic nanowires. Nano Lett. 11, 706–711 (2011).

    ADS  Article  Google Scholar 

  31. 31.

    Palacios, E., Park, S., Lauhon, L. & Aydin, K. Identifying excitation and emission rate contributions to plasmon-enhanced photoluminescence from monolayer MoS2 using a tapered gold nanoantenna. ACS Photon. 4, 1602–1606 (2017).

  32. 32.

    Curto, A. G. et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010).

    ADS  Article  Google Scholar 

  33. 33.

    Curto, A. G. et al. Multipolar radiation of quantum emitters with nanowire optical antennas. Nat. Commun. 4, 1750 (2013).

    Article  Google Scholar 

  34. 34.

    Hancu, I. M., Curto, A. G., Castro-López, M., Kuttge, M. & Van Hulst, N. F. Multipolar interference for directed light emission. Nano Lett. 14, 166–171 (2014).

    ADS  Article  Google Scholar 

  35. 35.

    Liu, W., Miroshnichenko, A. E., Neshev, D. N. & Kivshar, Y. S. Broadband unidirectional scattering by magneto-electric core–shell nanoparticles. ACS Nano 6, 5489–5497 (2012).

  36. 36.

    Coenen, T., Bernal Arango, F., Femius Koenderink, A. & Polman, A. Directional emission from a single plasmonic scatterer. Nat. Commun. 5, 3250 (2014).

    ADS  Article  Google Scholar 

  37. 37.

    Tian, J., Li, Q., Yang, Y. & Qiu, M. Tailoring unidirectional angular radiation through multipolar interference in a single-element subwavelength all-dielectric stair-like nanoantenna. Nanoscale 8, 4047–4053 (2016).

    ADS  Article  Google Scholar 

  38. 38.

    Sikdar, D., Cheng, W. & Premaratne, M. Optically resonant magneto-electric cubic nanoantennas for ultra-directional light scattering. J. Appl. Phys. 117, 83101 (2015).

    Article  Google Scholar 

  39. 39.

    Rolly, B., Stout, B., Bidault, S. & Bonod, N. Crucial role of the emitter–particle distance on the directivity of optical antennas. Opt. Lett. 36, 3368–3370 (2011).

    ADS  Article  Google Scholar 

  40. 40.

    Rolly, B., Stout, B. & Bonod, N. Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles. Opt. Express 20, 1473–1478 (2012).

    Article  Google Scholar 

  41. 41.

    Filonov, D. S. et al. Experimental verification of the concept of all-dielectric nanoantennas. Appl. Phys. Lett. 100, 201113 (2012).

    ADS  Article  Google Scholar 

  42. 42.

    Campione, S., Basilio, L. I., Warne, L. K. & Sinclair, M. B. Tailoring dielectric resonator geometries for directional scattering and Huygens’ metasurfaces. Opt. Express 23, 2293–2307 (2015).

    ADS  Article  Google Scholar 

  43. 43.

    Vynck, K. et al. All-dielectric rod-type metamaterials at optical frequencies. Phys. Rev. Lett. 102, 133901 (2009).

    ADS  Article  Google Scholar 

  44. 44.

    Krasnok, A. E., Miroshnichenko, A. E., Belov, P. A. & Kivshar, Y. S. All-dielectric optical nanoantennas. Opt. Express 20, 20599–20604 (2012).

    ADS  Article  Google Scholar 

  45. 45.

    Huang, K. C. Y., Jun, Y. C., Seo, M. & Brongersma, M. L. Power flow from a dipole emitter near an optical antenna. Opt. Express 19, 19084–19092 (2011).

  46. 46.

    Albella, P., Shibanuma, T. & Maier, S. A. Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers. Sci. Rep. 5, 18322 (2015).

    ADS  Article  Google Scholar 

  47. 47.

    Krasnok, A. E., Simovski, C. R., Belov, P. A. & Kivshar, Y. S. Superdirective dielectric nanoantennas. Nanoscale 6, 7354–7361 (2014).

    ADS  Article  Google Scholar 

  48. 48.

    Rolly, B., Geffrin, J.-M., Abdeddaim, R., Stout, B. & Bonod, N. Controllable emission of a dipolar source coupled with a magneto-dielectric resonant subwavelength scatterer. Sci. Rep. 3, 3063 (2013).

    Article  Google Scholar 

  49. 49.

    Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    ADS  Article  Google Scholar 

  50. 50.

    Wu, S. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69–72 (2015).

    ADS  Article  Google Scholar 

  51. 51.

    Akhavan, S., Cihan, A. F., Bozok, B. & Demir, H. V. Nanocrystal skins with exciton funneling for photosensing. Small 10, 2470–2475 (2014).

    Article  Google Scholar 

  52. 52.

    Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

    ADS  Article  Google Scholar 

  53. 53.

    Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

    ADS  Article  Google Scholar 

  54. 54.

    Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photon. 8, 899–907 (2014).

    ADS  Article  Google Scholar 

  55. 55.

    Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10, 216–226 (2016).

    ADS  Article  Google Scholar 

  56. 56.

    Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, Weinheim, 1983).

  57. 57.

    Liu, W. et al. Scattering of core-shell nanowires with the interference of electric and magnetic resonances. Opt. Lett. 38, 2621–2624 (2013).

    ADS  Article  Google Scholar 

  58. 58.

    Bharadwaj, P., Deutsch, B. & Novotny, L. Optical antennas. Adv. Opt. Photon. 1, 438–483 (2009).

    Article  Google Scholar 

  59. 59.

    Ringler, M. et al. Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys. Rev. Lett. 100, 203002 (2008).

    ADS  Article  Google Scholar 

  60. 60.

    Cui, Y., Lauhon, L. J., Gudiksen, M. S., Wang, J. & Lieber, C. M. Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78, 2214–2216 (2001).

    ADS  Article  Google Scholar 

Download references


This research was conducted with the support of the Air Force Office of Scientific Research (AFOSR), Quantum Metaphotonics and Metamaterials MURI (AFOSR Award FA9550-12-1-0488) and a Stanford Electrical Engineering Departmental Fellowship. S.R. is supported by a research grant (VKR023371) from VILLUM FONDEN. A.G.C. is supported by a Marie Curie International Outgoing Fellowship.

Author information




A.F.C. and M.L.B. conceived the idea. A.F.C., A.G.C. and M.L.B. designed the experiments. A.F.C. prepared the samples and carried out the experiments. S.R. conducted the theoretical calculations. A.F.C. conducted full-field simulations. P.G.K. provided guidance during the simulations and experiments. All authors analysed and discussed the results and were involved in writing the manuscript.

Corresponding author

Correspondence to Mark L. Brongersma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion, notes and figures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cihan, A.F., Curto, A.G., Raza, S. et al. Silicon Mie resonators for highly directional light emission from monolayer MoS2. Nature Photon 12, 284–290 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing