Article | Published:

Silicon Mie resonators for highly directional light emission from monolayer MoS2

Nature Photonicsvolume 12pages284290 (2018) | Download Citation


Controlling light emission from quantum emitters has important applications, ranging from solid-state lighting and displays to nanoscale single-photon sources. Optical antennas have emerged as promising tools to achieve such control right at the location of the emitter, without the need for bulky, external optics. Semiconductor nanoantennas are particularly practical for this purpose because simple geometries such as wires and spheres support multiple, degenerate optical resonances. Here, we start by modifying Mie scattering theory developed for plane wave illumination to describe scattering of dipole emission. We then use this theory and experiments to demonstrate several pathways to achieve control over the directionality, polarization state and spectral emission that rely on a coherent coupling of an emitting dipole to optical resonances of a silicon nanowire. A forward-to-backward ratio of 20 was demonstrated for the electric dipole emission at 680 nm from a monolayer MoS2 by optically coupling it to a silicon nanowire.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Novotny, L. & van Hulst, N. Antennas for light. Nat. Photon. 5, 83–90 (2011).

  2. 2.

    Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. & Lukyanchuk, B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).

  3. 3.

    Schuller, J., Zia, R., Taubner, T. & Brongersma, M. L. Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles. Phys. Rev. Lett. 99, 107401 (2007).

  4. 4.

    Cao, L. et al. Engineering light absorption in semiconductor nanowire devices. Nat. Mater. 8, 643–647 (2009).

  5. 5.

    van de Groep, J. & Polman, A. Designing dielectric resonators on substrates: combining magnetic and electric resonances. Opt. Express 21, 1253–1257 (2013).

  6. 6.

    Spinelli, P., Verschuuren, M. A. & Polman, A. Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nat. Commun. 3, 692 (2012).

  7. 7.

    Staude, I. et al. Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles. ACS Photon. 2, 172–177 (2015).

  8. 8.

    Paniagua-Domínguez, R. et al. Generalized Brewster effect in dielectric metasurfaces. Nat. Commun. 7, 10362 (2016).

  9. 9.

    Grzela, G. et al. Nanowire antenna emission. Nano Lett. 12, 5481–5486 (2012).

  10. 10.

    Paniagua-Domínguez, R., Grzela, G., Rivas, J. G. & Sánchez-Gil, J. A. Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes. Nanoscale 5, 10582–10590 (2013).

  11. 11.

    Staude, I. et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 7, 7824–7832 (2013).

  12. 12.

    Sautter, J. et al. Active tuning of all-dielectric metasurfaces. ACS Nano 9, 4308–4315 (2015).

  13. 13.

    Cao, L. et al. Semiconductor nanowire optical antenna solar absorbers. Nano Lett. 10, 439–445 (2010).

  14. 14.

    Person, S. et al. Demonstration of zero optical backscattering from single nanoparticles. Nano Lett. 13, 1806–1809 (2013).

  15. 15.

    Kerker, M., Wang, D. & Giles, C. L. Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 73, 765–767 (1983).

  16. 16.

    Geffrin, J. M. et al. Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nat. Commun. 3, 1171 (2012).

  17. 17.

    Wiecha, P. R. et al. Strongly directional scattering from dielectric nanowires. ACS Photon. 4, 2036–2046 (2017).

  18. 18.

    Fu, Y. H., Kuznetsov, A. I., Miroshnichenko, A. E., Yu, Y. F. & Luk’yanchuk, B. Directional visible light scattering by silicon nanoparticles. Nat. Commun. 4, 1527 (2013).

  19. 19.

    Atakaramians, S. et al. Strong magnetic response of optical nanofibers. ACS Photon. 3, 972–978 (2016).

  20. 20.

    Ma, X. et al. Solitary oxygen dopant emission from carbon. ACS Nano 11, 6431–6439 (2017).

  21. 21.

    Wierer, J. J., David, A. & Megens, M. M. iii-nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nat. Photon. 3, 163–169 (2009).

  22. 22.

    Noda, S., Fujita, M. & Asano, T. Spontaneous-emission control by photonic crystals and nanocavities. Nat. Photon. 1, 449–458 (2007).

  23. 23.

    Fontana, Y., Grzela, G., Bakkers, E. P. A. M. & Rivas, J. G. Mapping the directional emission of quasi-two-dimensional photonic crystals of semiconductor nanowires using Fourier microscopy. Phys. Rev. B 86, 245303 (2012).

  24. 24.

    Kaniber, M. et al. Highly efficient single-photon emission from single quantum dots within a two-dimensional photonic band-gap. Phys. Rev. B 77, 073312 (2008).

  25. 25.

    Peter, M. et al. Directional emission from dielectric leaky-wave nanoantennas. Nano Lett. 17, 4178–4183 (2017).

  26. 26.

    Chen, H. et al. Enhanced directional emission from monolayer WSe2 integrated onto a multi-resonant silicon-based photonic structure. ACS Photon. 4, 3031–3038 (2017).

  27. 27.

    Chu, X.-L. et al. Experimental realization of an optical antenna designed for collecting 99% of photons from a quantum emitter. Optica 1, 203–208 (2014).

  28. 28.

    Checcucci, S. et al. Beaming light from a quantum emitter with a planar optical antenna. Light Sci. Appl. 6, e16245 (2017).

  29. 29.

    Tong, L., Pakizeh, T., Feuz, L. & Dmitriev, A. Highly directional bottom-up 3D nanoantenna for visible light. Sci. Rep. 3, 2311 (2013).

  30. 30.

    Shegai, T. et al. Unidirectional broadband light emission from supported plasmonic nanowires. Nano Lett. 11, 706–711 (2011).

  31. 31.

    Palacios, E., Park, S., Lauhon, L. & Aydin, K. Identifying excitation and emission rate contributions to plasmon-enhanced photoluminescence from monolayer MoS2 using a tapered gold nanoantenna. ACS Photon. 4, 1602–1606 (2017).

  32. 32.

    Curto, A. G. et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010).

  33. 33.

    Curto, A. G. et al. Multipolar radiation of quantum emitters with nanowire optical antennas. Nat. Commun. 4, 1750 (2013).

  34. 34.

    Hancu, I. M., Curto, A. G., Castro-López, M., Kuttge, M. & Van Hulst, N. F. Multipolar interference for directed light emission. Nano Lett. 14, 166–171 (2014).

  35. 35.

    Liu, W., Miroshnichenko, A. E., Neshev, D. N. & Kivshar, Y. S. Broadband unidirectional scattering by magneto-electric core–shell nanoparticles. ACS Nano 6, 5489–5497 (2012).

  36. 36.

    Coenen, T., Bernal Arango, F., Femius Koenderink, A. & Polman, A. Directional emission from a single plasmonic scatterer. Nat. Commun. 5, 3250 (2014).

  37. 37.

    Tian, J., Li, Q., Yang, Y. & Qiu, M. Tailoring unidirectional angular radiation through multipolar interference in a single-element subwavelength all-dielectric stair-like nanoantenna. Nanoscale 8, 4047–4053 (2016).

  38. 38.

    Sikdar, D., Cheng, W. & Premaratne, M. Optically resonant magneto-electric cubic nanoantennas for ultra-directional light scattering. J. Appl. Phys. 117, 83101 (2015).

  39. 39.

    Rolly, B., Stout, B., Bidault, S. & Bonod, N. Crucial role of the emitter–particle distance on the directivity of optical antennas. Opt. Lett. 36, 3368–3370 (2011).

  40. 40.

    Rolly, B., Stout, B. & Bonod, N. Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles. Opt. Express 20, 1473–1478 (2012).

  41. 41.

    Filonov, D. S. et al. Experimental verification of the concept of all-dielectric nanoantennas. Appl. Phys. Lett. 100, 201113 (2012).

  42. 42.

    Campione, S., Basilio, L. I., Warne, L. K. & Sinclair, M. B. Tailoring dielectric resonator geometries for directional scattering and Huygens’ metasurfaces. Opt. Express 23, 2293–2307 (2015).

  43. 43.

    Vynck, K. et al. All-dielectric rod-type metamaterials at optical frequencies. Phys. Rev. Lett. 102, 133901 (2009).

  44. 44.

    Krasnok, A. E., Miroshnichenko, A. E., Belov, P. A. & Kivshar, Y. S. All-dielectric optical nanoantennas. Opt. Express 20, 20599–20604 (2012).

  45. 45.

    Huang, K. C. Y., Jun, Y. C., Seo, M. & Brongersma, M. L. Power flow from a dipole emitter near an optical antenna. Opt. Express 19, 19084–19092 (2011).

  46. 46.

    Albella, P., Shibanuma, T. & Maier, S. A. Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers. Sci. Rep. 5, 18322 (2015).

  47. 47.

    Krasnok, A. E., Simovski, C. R., Belov, P. A. & Kivshar, Y. S. Superdirective dielectric nanoantennas. Nanoscale 6, 7354–7361 (2014).

  48. 48.

    Rolly, B., Geffrin, J.-M., Abdeddaim, R., Stout, B. & Bonod, N. Controllable emission of a dipolar source coupled with a magneto-dielectric resonant subwavelength scatterer. Sci. Rep. 3, 3063 (2013).

  49. 49.

    Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

  50. 50.

    Wu, S. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69–72 (2015).

  51. 51.

    Akhavan, S., Cihan, A. F., Bozok, B. & Demir, H. V. Nanocrystal skins with exciton funneling for photosensing. Small 10, 2470–2475 (2014).

  52. 52.

    Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

  53. 53.

    Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

  54. 54.

    Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photon. 8, 899–907 (2014).

  55. 55.

    Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10, 216–226 (2016).

  56. 56.

    Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, Weinheim, 1983).

  57. 57.

    Liu, W. et al. Scattering of core-shell nanowires with the interference of electric and magnetic resonances. Opt. Lett. 38, 2621–2624 (2013).

  58. 58.

    Bharadwaj, P., Deutsch, B. & Novotny, L. Optical antennas. Adv. Opt. Photon. 1, 438–483 (2009).

  59. 59.

    Ringler, M. et al. Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys. Rev. Lett. 100, 203002 (2008).

  60. 60.

    Cui, Y., Lauhon, L. J., Gudiksen, M. S., Wang, J. & Lieber, C. M. Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78, 2214–2216 (2001).

Download references


This research was conducted with the support of the Air Force Office of Scientific Research (AFOSR), Quantum Metaphotonics and Metamaterials MURI (AFOSR Award FA9550-12-1-0488) and a Stanford Electrical Engineering Departmental Fellowship. S.R. is supported by a research grant (VKR023371) from VILLUM FONDEN. A.G.C. is supported by a Marie Curie International Outgoing Fellowship.

Author information


  1. Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA

    • Ahmet Fatih Cihan
    • , Alberto G. Curto
    • , Søren Raza
    • , Pieter G. Kik
    •  & Mark L. Brongersma
  2. Department of Applied Physics and Institute for Photonic Integration, Eindhoven University of Technology, Eindhoven, the Netherlands

    • Alberto G. Curto
  3. CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, USA

    • Pieter G. Kik


  1. Search for Ahmet Fatih Cihan in:

  2. Search for Alberto G. Curto in:

  3. Search for Søren Raza in:

  4. Search for Pieter G. Kik in:

  5. Search for Mark L. Brongersma in:


A.F.C. and M.L.B. conceived the idea. A.F.C., A.G.C. and M.L.B. designed the experiments. A.F.C. prepared the samples and carried out the experiments. S.R. conducted the theoretical calculations. A.F.C. conducted full-field simulations. P.G.K. provided guidance during the simulations and experiments. All authors analysed and discussed the results and were involved in writing the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Mark L. Brongersma.

Supplementary information

  1. Supplementary Information

    Supplementary discussion, notes and figures.

About this article

Publication history