Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency

Abstract

Reducing non-radiative recombination in semiconducting materials is a prerequisite for achieving the highest performance in light-emitting and photovoltaic applications. Here, we characterize both external and internal photoluminescence quantum efficiency and quasi-Fermi-level splitting of surface-treated hybrid perovskite (CH3NH3PbI3) thin films. With respect to the material bandgap, these passivated films exhibit the highest quasi-Fermi-level splitting measured to date, reaching 97.1 ± 0.7% of the radiative limit, approaching that of the highest performing GaAs solar cells. We confirm these values with independent measurements of internal photoluminescence quantum efficiency of 91.9 ± 2.7% under 1 Sun illumination intensity, setting a new benchmark for these materials. These results suggest hybrid perovskite solar cells are inherently capable of further increases in power conversion efficiency if surface passivation can be combined with optimized charge carrier selective interfaces.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Absolute intensity photoluminescence spectra of control and TOPO-treated CH3NH3PbI3 films deposited on an Au back-reflector substrate measured in air.
Fig. 2: Image and schematic diagram of multi-metal back-reflector substrates for determining the internal PLQE.
Fig. 3: Determination of internal PLQE of surface-passivated perovskite film on a substrate with varying back-surface parasitic absorption.
Fig. 4: Photoluminescence spectroscopy measurements to determine the maximum achievable quantum efficiency under high excitation powers and low temperatures.

References

  1. 1.

    Sutherland, B. R. & Sargent, E. H. Perovskite photonic sources. Nat. Photon. 10, 295–302 (2016).

    ADS  Article  Google Scholar 

  2. 2.

    Zhang, W., Eperon, G. E. & Snaith, H. J. Metal halide perovskites for energy applications. Nat. Energy 1, 16048 (2016).

    ADS  Article  Google Scholar 

  3. 3.

    De Wolf, S. et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).

    Article  Google Scholar 

  4. 4.

    Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    ADS  Article  Google Scholar 

  5. 5.

    deQuilettes, D. W. Photoluminescence lifetimes exceeding 8 μs and quantum yields exceeding 30% in hybrid perovskite thin films by ligand passivation. ACS Energy Lett. 1, 438–444 (2016).

    Article  Google Scholar 

  6. 6.

    Herz, L. M. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017).

    Article  Google Scholar 

  7. 7.

    Richter, J. M. et al. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nat. Commun. 7, 13941 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Tress, W. Perovskite solar cells on the way to their radiative efficiency limit—insights into a success story of high open-circuit voltage and low recombination. Adv. Energy Mater. 7, 1602358 (2017).

    Article  Google Scholar 

  9. 9.

    Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014).

    Article  Google Scholar 

  10. 10.

    Tvingstedt, K. et al. Radiative efficiency of lead iodide based perovskite solar cells. Sci. Rep. 4, 6071 (2014).

    Article  Google Scholar 

  11. 11.

    Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    ADS  Article  Google Scholar 

  12. 12.

    Rau, U. Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B 76, 085303 (2007).

    ADS  Article  Google Scholar 

  13. 13.

    Katahara, J. K. & Hillhouse, H. W. Quasi-Fermi level splitting and sub-bandgap absorptivity from semiconductor photoluminescence. J. Appl. Phys. 116, 173504 (2014).

    ADS  Article  Google Scholar 

  14. 14.

    Amani, M. et al. Near-unity photoluminescence quantum yield in MoS2. Science 350, 1065–1068 (2015).

    ADS  Article  Google Scholar 

  15. 15.

    Tiedje, T., Yablonovitch, E., Cody, G. D. & Brooks, B. G. Limiting efficiency of silicon solar cells. IEEE Trans. Electron. Devices 31, 711–716 (1984).

    ADS  Article  Google Scholar 

  16. 16.

    Green, M. A. et al. Solar cell efficiency tables (version 49). Prog. Photovolt. Res. Appl. 25, 3–13 (2017).

    Article  Google Scholar 

  17. 17.

    Trupke, T. et al. Very efficient light emission from bulk crystalline silicon. Appl. Phys. Lett. 82, 2996–2998 (2003).

    ADS  Article  Google Scholar 

  18. 18.

    Yao, J. et al. Quantifying losses in open-circuit voltage in solution-processable solar cells. Phys. Rev. Appl. 4, 014020 (2015).

    ADS  Article  Google Scholar 

  19. 19.

    Miller, O. D., Yablonovitch, E. & Kurtz, S. R. Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit. IEEE J. Photovolt. 2, 303–311 (2012).

    Article  Google Scholar 

  20. 20.

    Schnitzer, I., Yablonovitch, E., Caneau, C. & Gmitter, T. J. Ultra-high spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures. Appl. Phys. Lett. 62, 131–133 (1993).

    ADS  Article  Google Scholar 

  21. 21.

    Correa-Baena, J. P. et al. Promises and challenges of perovskite solar cells. Science 358, 739–744 (2017).

    ADS  Article  Google Scholar 

  22. 22.

    Pazos-Outon, L. M. et al. Photon recycling in lead iodide perovskite solar cells. Science 351, 1430–1433 (2016).

    ADS  Article  Google Scholar 

  23. 23.

    Yang, Y. et al. Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films. Nat. Energy 2, 16207 (2017).

    ADS  Article  Google Scholar 

  24. 24.

    Noel, N. K. et al. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites. ACS Nano 8, 9815–9821 (2014).

    Article  Google Scholar 

  25. 25.

    Stewart, R. J. et al. Approaching bulk carrier dynamics in organo-halide perovskite nanocrystalline films by surface passivation. J. Phys. Chem. Lett. 7, 1148–1153 (2016).

    Article  Google Scholar 

  26. 26.

    Aberle, A. G. Surface passivation of crystalline silicon solar cells: a review. Prog. Photovolt. Res. Appl. 8, 473–487 (2000).

    Article  Google Scholar 

  27. 27.

    Bertness, K. A. et al. 29.5%-efficient GaInP/GaAs tandem solar cells. Appl. Phys. Lett. 65, 989–991 (1994).

    ADS  Article  Google Scholar 

  28. 28.

    Zheng, X. et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017).

    ADS  Article  Google Scholar 

  29. 29.

    Pazos-Outon, L. M., Xiao, T. P. & Yablonovitch, E. Fundamental efficiency limit of lead iodide perovskite solar cells. J. Phys. Chem. Lett. 9, 1703–1711 (2018).

    Article  Google Scholar 

  30. 30.

    Kirchartz, T., Staub, F. & Rau, U. Impact of photon recycling on the open-circuit voltage of metal halide perovskite solar cells. ACS Energy Lett. 1, 731–739 (2016).

    Article  Google Scholar 

  31. 31.

    Yablonovitch, E., Miller, O. D. & Kurtz, S. R. The opto-electronic physics that broke the efficiency limit in solar cells. 38 th IEEE Photovoltaic Specialists Conference 001556–001559 (IEEE, 2012).

  32. 32.

    Zhang, W. et al. Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 6, 6142 (2015).

    Article  Google Scholar 

  33. 33.

    Saliba, M. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016).

    ADS  Article  Google Scholar 

  34. 34.

    Bauer, G. H., Brüggemann, R., Tardon, S., Vignoli, S. & Kniese, R. Quasi-Fermi level splitting and identification of recombination losses from room temperature luminescence in Cu(In1–xGa x )Se2 thin films versus optical band gap. Thin Solid Films 480, 410–414 (2005).

    ADS  Article  Google Scholar 

  35. 35.

    Ross, R. T. Some thermodynamics of photochemical systems. J. Chem. Phys. 46, 4590–4593 (1967).

    ADS  Article  Google Scholar 

  36. 36.

    deQuilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015).

    ADS  Article  Google Scholar 

  37. 37.

    Kayes, B. M. et al. 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. 37th IEEE Photovoltaic Specialists Conference 000004–000008 (IEEE, 2011).

  38. 38.

    Drexhage, K. H. Fluorescence efficiency of laser dyes. J. Res. Natl Bur. Stand. A 80A, 421 (1976).

    Article  Google Scholar 

  39. 39.

    Johnston, M. B. & Herz, L. M. Hybrid perovskites for photovoltaics: charge-carrier recombination, diffusion, and radiative efficiencies. Acc. Chem. Res. 49, 146–154 (2016).

    Article  Google Scholar 

  40. 40.

    Stranks, S. D. et al. Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states. Phys. Rev. Appl. 2, 034007 (2014).

    ADS  Article  Google Scholar 

  41. 41.

    Lin, Q. et al. Hybrid perovskites: prospects for concentrator solar cells. Adv. Sci. 2018, 1700792 (2018).

    Article  Google Scholar 

  42. 42.

    Stranks, S. D. Nonradiative losses in metal halide perovskites. ACS Energy Lett. 2, 1515–1525 (2017).

    Article  Google Scholar 

  43. 43.

    Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

    Article  Google Scholar 

  44. 44.

    Sandroff, C. J., Nottenburg, R. N., Bischoff, J. C. & Bhat, R. Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation. Appl. Phys. Lett. 51, 33–35 (1987).

    ADS  Article  Google Scholar 

  45. 45.

    Yablonovitch, E., Sandroff, C. J., Bhat, R. & Gmitter, T. Nearly ideal electronic properties of sulfide coated GaAs surfaces. Appl. Phys. Lett. 51, 439–441 (1987).

    ADS  Article  Google Scholar 

  46. 46.

    Knesting, K. M. et al. ITO interface modifiers can improve V OC in polymer solar cells and suppress surface recombination. J. Phys. Chem. Lett. 4, 4038–4044 (2013).

    Article  Google Scholar 

  47. 47.

    Stoddard, R. J., Eickemeyer, F. T., Katahara, J. K. & Hillhouse, H. W. Correlation between photoluminescence and carrier transport and a simple in-situ passivation method for high-bandgap hybrid perovskites. J. Phys. Chem. Lett. 8, 3289–3298 (2017).

    Article  Google Scholar 

  48. 48.

    deQuilettes, D. W. et al. Tracking photoexcited carriers in hybrid perovskite semiconductors: trap-dominated spatial heterogeneity and diffusion. ACS Nano 11, 11488–11496 (2017).

    Article  Google Scholar 

  49. 49.

    Wang, T. et al. Indirect to direct bandgap transition in methylammonium lead halide perovskite. Energy Environ. Sci. 10, 509–515 (2017).

    Article  Google Scholar 

  50. 50.

    Kirchartz, T. & Rau, U. Decreasing radiative recombination coefficients via an indirect band gap in lead halide perovskites. J. Phys. Chem. Lett. 8, 1265–1271 (2017).

    Article  Google Scholar 

  51. 51.

    Wright, A. D. et al. Band-tail recombination in hybrid lead iodide perovskite. Adv. Funct. Mater. 27, 1700860 (2017).

    Article  Google Scholar 

  52. 52.

    Ziffer, M. E., Mohammed, J. C. & Ginger, D. S. Electroabsorption spectroscopy measurements of the exciton binding energy, electron–hole reduced effective mass, and band gap in the perovskite CH3NH3PbI3. ACS Photon. 3, 1060–1068 (2016).

    Article  Google Scholar 

  53. 53.

    de Mello, J. C., Wittmann, H. F. & Friend, R. H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 9, 230–232 (1997).

    Article  Google Scholar 

  54. 54.

    Edelstein, A. D. et al. Advanced methods of microscope control using μManager software. J. Biol. Methods 1, e10 (2014).

    Article  Google Scholar 

  55. 55.

    Blattner, T. et al. A hybrid CPU–GPU system for stitching large scale optical microscopy images. 43rd International Conference on Parallel Processing (IEEE, 2014).

  56. 56.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

D.W.D. and D.S.G. acknowledge the US Department of Energy (DOE) (DE-SC0013957) for supporting the microscopy work. D.W.D. acknowledges support from an NSF Graduate Research Fellowship (DGE-1256082) and thanks L. Flagg for experimental help. I.L.B. and H.W.H. acknowledge financial support from the US DOE SunShot Initiative, Next Generation Photovoltaics 3 program, Award DE-EE0006710. Part of this work was conducted at the Molecular Analysis Facility and at the Washington Nanofabrication Facility, two National Nanotechnology Coordinated Infrastructure sites at the University of Washington, which are supported in part by the NSF (grant no. ECC-1542101), the University of Washington, the Molecular Engineering and Sciences Institute, the Clean Energy Institute and the National Institutes of Health. L.M.P.-O was supported by the Kavli Energy NanoScience Institute Heising-Simons Junior Fellowship of the University of California, Berkeley. The authors acknowledge F. Deschler for his helpful discussions.

Author information

Affiliations

Authors

Contributions

The project was conceived, planned and coordinated by D.W.D., I.L.B., H.W.H. and D.S.G. Samples were prepared by I.L.B., D.W.D. and S.B. Absolute-intensity photoluminescence spectra and fits were completed by I.L.B. Integrating sphere measurements were conducted by D.W.D. Intensity and temperature-dependent measurements were collected by I.L.B. and D.W.D. L.M.P.-O assisted in extracting the internal PLQE and calculating photovoltaic device metrics. M.E.Z. performed ellipsometry measurements and analysis. All authors assisted in the interpretation of results. D.W.D. and I.L.B wrote the manuscript, and all authors helped with editing.

Corresponding authors

Correspondence to David S. Ginger or Hugh W. Hillhouse.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisherʼs note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Additional analysis and modelling.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Braly, I.L., deQuilettes, D.W., Pazos-Outón, L.M. et al. Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency. Nature Photon 12, 355–361 (2018). https://doi.org/10.1038/s41566-018-0154-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing