Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Polarization control of isolated high-harmonic pulses

Abstract

High-harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, thus far, the shortest isolated attosecond pulses have only been produced with linear polarization, which limits the range of physics that can be explored. Here, we demonstrate robust polarization control of isolated extreme-ultraviolet pulses by exploiting non-collinear high-harmonic generation driven by two counter-rotating few-cycle laser beams. The circularly polarized supercontinuum is produced at a central photon energy of 33 eV with a transform limit of 190 as and a predicted linear chirp of 330 as. By adjusting the ellipticity of the two counter-rotating driving pulses simultaneously, we control the polarization state of isolated extreme-ultraviolet pulses—from circular through elliptical to linear polarization—without sacrificing conversion efficiency. Access to the purely circularly polarized supercontinuum, combined with full helicity and ellipticity control, paves the way towards attosecond metrology of circular dichroism.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Set-up for generating arbitrarily polarized isolated high-harmonic pulses using few-cycle driving lasers.
Fig. 2: Experimental demonstration and characterization of circularly polarized EUV HHG supercontinua.
Fig. 3: Full polarization control of isolated high-harmonic pulses.
Fig. 4: Ellipticity and tilt angle scaling of isolated high-harmonic pulses.

References

  1. 1.

    Spezzani, C. et al. Coherent light with tunable polarization from single-pass free-electron lasers. Phys. Rev. Lett. 107, 084801 (2011).

    ADS  Article  Google Scholar 

  2. 2.

    Suzuki, M., Inubushi, Y., Yabashi, M. & Ishikawa, T. Polarization control of an X-ray free-electron laser with a diamond phase retarder. J. Synchrot. Radiat. 21, 466–472 (2014).

    Article  Google Scholar 

  3. 3.

    Lutman, A. A. et al. Polarization control in an X-ray free-electron laser. Nat. Photon. 10, 468–472 (2016).

    ADS  Article  Google Scholar 

  4. 4.

    Allaria, E. et al. Control of the polarization of a vacuum-ultraviolet, high-gain, free-electron laser. Phys. Rev. X 4, 041040 (2014).

    Google Scholar 

  5. 5.

    Eichmann, H., Egbert, A., Nolte, S., Momma, C. & Wellegehausen, B. Polarization-dependent high-order two-color mixing. Phys. Rev. A 51, R3414–R3417 (1995).

    ADS  Article  Google Scholar 

  6. 6.

    Fleischer, A., Kfir, O., Diskin, T., Sidorenko, P. & Cohen, O. Spin angular momentum and tunable polarization in high-harmonic generation. Nat. Photon. 8, 543–549 (2014).

    ADS  Article  Google Scholar 

  7. 7.

    Ferré, A. et al. A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments. Nat. Photon. 9, 93–98 (2015).

    ADS  Article  Google Scholar 

  8. 8.

    Kfir, O. et al. Generation of bright phase-matched circularly-polarized extreme ultraviolet high harmonics. Nat. Photon. 9, 99–105 (2015).

    ADS  Article  Google Scholar 

  9. 9.

    Fan, T. et al. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism. Proc. Natl Acad. Sci. USA 112, 14206–14211 (2015).

    ADS  Article  Google Scholar 

  10. 10.

    Ribic, P. R. & Margaritondo, G. Status and prospects of X-ray free-electron lasers (X-FELs): a simple presentation. J. Phys. D 45, 213001 (2012).

    ADS  Article  Google Scholar 

  11. 11.

    Schafer, K. J., Yang, B., DiMauro, L. F. & Kulander, K. C. Above threshold ionization beyond the high harmonic cutoff. Phys. Rev. Lett. 70, 1599–1602 (1993).

    ADS  Article  Google Scholar 

  12. 12.

    Corkum, P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    ADS  Article  Google Scholar 

  13. 13.

    Balcou, P., Salieres, P., L’Huillier, A. & Lewenstein, M. Generalized phase-matching conditions for high harmonics: the role of field-gradient forces. Phys. Rev. A 55, 3204–3210 (1997).

    ADS  Article  Google Scholar 

  14. 14.

    Rundquist, A. et al. Phase-matched generation of coherent soft X-rays. Science 280, 1412–1415 (1998).

    ADS  Article  Google Scholar 

  15. 15.

    Gaarde, M. B., Tate, J. L. & Schafer, K. J. Macroscopic aspects of attosecond pulse generation. J. Phys. B 41, 132001 (2008).

    ADS  Article  Google Scholar 

  16. 16.

    Arpin, P., Murnane, M. M. & Kapteyn, H. C. Quasi-phase-matching of momentum and energy in nonlinear optical processes. Nat. Photon. 4, 571–575 (2010).

    ADS  Google Scholar 

  17. 17.

    Sun, H.-W. et al. Extended phase matching of high harmonic generation by plasma-induced defocusing. Optica 4, 976–981 (2017).

    Article  Google Scholar 

  18. 18.

    Dietrich, P., Burnett, N. H., Ivanov, M. & Corkum, P. B. High-harmonic generation and correlated two-electron multiphoton ionization with elliptically polarized light. Phys. Rev. A 50, R3585–R3588 (1994).

    ADS  Article  Google Scholar 

  19. 19.

    Weihe, F. A. et al. Polarization of high-intensity high-harmonic generation. Phys. Rev. A 51, R3433–R3436 (1995).

    ADS  Article  Google Scholar 

  20. 20.

    Vodungbo, B. et al. Polarization control of high order harmonics in the EUV photon energy range. Opt. Express 19, 4346–4356 (2011).

    ADS  Article  Google Scholar 

  21. 21.

    Medišauskas, L., Wragg, J., van der Hart, H. & Ivanov, M. Y. Generating isolated elliptically polarized attosecond pulses using bichromatic counterrotating circularly polarized laser fields. Phys. Rev. Lett. 115, 153001 (2015).

    ADS  Article  Google Scholar 

  22. 22.

    Hickstein, D. D. et al. Non-collinear generation of angularly isolated circularly polarized high harmonics. Nat. Photon. 9, 743–750 (2015).

    ADS  Article  Google Scholar 

  23. 23.

    Hernandez-Garcia, C. et al. Schemes for generation of isolated attosecond pulses of pure circular polarization. Phys. Rev. A 93, 043855 (2016).

    ADS  Article  Google Scholar 

  24. 24.

    Lu, C.-H. et al. Generation of intense supercontinuum in condensed media. Optica 1, 400–406 (2014).

    Article  Google Scholar 

  25. 25.

    Chen, M.-C. et al. Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers. Proc. Natl Acad. Sci. USA 111, E2361–E2367 (2014).

    Article  Google Scholar 

  26. 26.

    Hernández-García, C., San Román, J., Plaja, L. & Picón, A. Quantum-path signatures in attosecond helical beams driven by optical vortices. New. J. Phys. 17, 093029 (2015).

    ADS  Article  Google Scholar 

  27. 27.

    Rego, L., San Román, J., Picón, A., Plaja, L. & Hernández-García, C. Nonperturbative twist in the generation of extreme-ultraviolet vortex beams. Phys. Rev. Lett. 117, 163202 (2016).

    ADS  Article  Google Scholar 

  28. 28.

    Trebino, R. et al. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev. Sci. Instrum. 68, 3277–3295 (1997).

    ADS  Article  Google Scholar 

  29. 29.

    Heyl, C. M. et al. Noncollinear optical gating. New. J. Phys. 16, 052001 (2014).

    ADS  Article  Google Scholar 

  30. 30.

    Koide, T. et al. Elliptical-polarization analyses of synchrotron radiation in the 5–80-eV region with a reflection polarimeter. Nucl. Instrum. Methods Phys. Rec. Sect. A 308, 635–644 (1991).

    ADS  Article  Google Scholar 

  31. 31.

    Hernández-García, C. et al. High-order harmonic propagation in gases within the discrete dipole approximation. Phys. Rev. A 82, 033432 (2010).

    ADS  Article  Google Scholar 

  32. 32.

    Xie, X. et al. Internal momentum state mapping using high harmonic radiation. Phys. Rev. Lett. 101, 033901 (2008).

    ADS  Article  Google Scholar 

  33. 33.

    Zhou, X. et al. Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields. Phys. Rev. Lett. 102, 073902 (2009).

    ADS  Article  Google Scholar 

  34. 34.

    Fleischer, A., Sidorenko, P. & Cohen, O. Generation of high-order harmonics with controllable elliptical polarization. Opt. Lett. 38, 223–225 (2013).

    ADS  Article  Google Scholar 

  35. 35.

    Dorney, K. M. et al. Helicity-selective enhancement and polarization control of attosecond high harmonic waveforms driven by bichromatic circularly polarized laser fields. Phys. Rev. Lett. 119, 063201 (2017).

    ADS  Article  Google Scholar 

  36. 36.

    Chini, M., Zhao, K. & Chang, Z. The generation, characterization and applications of broadband isolated attosecond pulses. Nat. Photon. 8, 178–186 (2014).

    ADS  Article  Google Scholar 

  37. 37.

    Stöhr, J. et al. Element-specific magnetic microscopy with circularly polarized X-rays. Science 259, 658–661 (1993).

    ADS  Google Scholar 

  38. 38.

    Boeglin, C. et al. Distinguishing the ultrafast dynamics of spin and orbital moments in solids. Nature 465, 458–461 (2010).

    ADS  Article  Google Scholar 

  39. 39.

    Meyer-Ilse, J., Akimov, D. & Dietzek, B. Recent advances in ultrafast time-resolved chirality measurements: perspective and outlook. Laser Photon. Rev. 7, 495–505 (2013).

    Article  Google Scholar 

  40. 40.

    Graves, C. E. Nanoscale spin reversal by non-local angular momentum transfer following ultrafast laser excitation in ferrimagnetic GdFeCo. Nat. Mater. 12, 293–298 (2013).

    ADS  Article  Google Scholar 

  41. 41.

    Chefdeville, S. et al. Direct determination of absolute molecular stereochemistry in gas phase by Coulomb explosion imaging. Science 341, 1094–1096 (2013).

    ADS  Article  Google Scholar 

  42. 42.

    Bigot, J.-Y., Vomir, M. & Beaurepaire, E. Coherent ultrafast magnetism induced by femtosecond laser pulses. Nat. Phys. 5, 515–520 (2009).

    Article  Google Scholar 

  43. 43.

    Mangot, L. et al. Broadband transient dichroism spectroscopy in chiral molecules. Opt. Lett. 35, 381–383 (2010).

    ADS  Article  Google Scholar 

  44. 44.

    Janssen, M. H. & Powis, I. Detecting chirality in molecules by imaging photoelectron circular dichroism. Phys. Chem. Chem. Phys. 16, 856–871 (2014).

    Article  Google Scholar 

  45. 45.

    Cireasa, R. et al. Probing molecular chirality on a sub-femtosecond timescale. Nat. Phys. 11, 654–658 (2015).

    Article  Google Scholar 

  46. 46.

    Tao, Z. et al. Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids. Science 353, 62–67 (2016).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  47. 47.

    Fidler, A. F., Singh, V. P., Long, P. D., Dahlberg, P. D. & Engel, G. S. Dynamic localization of electronic excitation in photosynthetic complexes revealed with chiral two-dimensional spectroscopy. Nat. Commun. 5, 3286 (2017).

    Article  Google Scholar 

  48. 48.

    Chen, C. et al. Distinguishing attosecond electron–electron scattering and screening in transition metals. Proc. Natl Acad. Sci. USA 114, E5300–E5307 (2017).

    Article  Google Scholar 

  49. 49.

    Beaulieu, S. et al. Probing ultrafast dynamics of chiral molecules using time-resolved photoelectron circular dichroism. Faraday Discuss. 194, 325–348 (2016).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The experimental work was carried out at National Tsing Hua University, Institute of Photonics Technologies, supported by the Ministry of Science and Technology, Taiwan (grants 105-2112-M-007-030-MY3, 105-2112-M-001-030 and 104-2112-M-007-012-MY3). The concept of isolated circularly polarized attosecond pulses was developed by C.H.-G., D.D.H., M.M.M., C.G.D., H.C.K., A.B. and A.J.-B.. C.H.-G. acknowledges support from the Marie Curie International Outgoing Fellowship within the EU Seventh Framework Programme for Research and Technological Development (2007–2013), under Research Executive Agency grant agreement no. 328334. C.H.-G. and L.P. acknowledge support from Junta de Castilla y León (SA046U16) and the Ministerio de Economía y Competitividad (FIS2013-44174-P, FIS2016-75652-P). C.H.-G. acknowledges support from a 2017 Leonardo Grant for Researchers and Cultural Creators (BBVA Foundation). M.M.M. and H.C.K. acknowledge support from the Department of Energy Basic Energy Sciences (award no. DE-FG02-99ER14982) for the concepts and experimental set-up. For part of the theory, A.B., A.J.-B., C.G.D., M.M.M. and H.C.K. acknowledge support from a Multidisciplinary University Research Initiatives grant from the Air Force Office of Scientific Research (award no. FA9550-16-1-0121). A.J.-B. also acknowledges support from the US National Science Foundation (grant no. PHY-1734006). This work utilized the Janus supercomputer, which is supported by the US National Science Foundation (grant no. CNS-0821794) and the University of Colorado, Boulder. This research made use of the high-performance computing resources of the Castilla y León Supercomputing Center (SCAYLE, www.scayle.es), financed by the European Regional Development Fund (ERDF). J.L.E. acknowledges support from the National Science Foundation Graduate Research Fellowship (DGE-1144083). L.R. acknowledges support from the Ministerio de Educación, Cultura y Deporte (FPU16/02591).

Author information

Affiliations

Authors

Contributions

P.-C.H., J.-T.H., P.-Y.H., C.-H.L., D.D.H., J.L.E., C.G.D., H.C.K., M.M.M., A.H.K. and M.-C.C. designed the experiment with circularly polarized isolated high-harmonic pulses. P.-C.H., J.-T.H., P.-Y.H., S.-D.Y., A.H.K. and M.-C.C. proposed the full polarization control of HHG and designed the EUV polarimeter. P.-C.H., J.-T.H., P.-Y.H., C.-H.L. and M.-C.C. performed the experiments. C.H.-G., A.B. and A.J.-B. performed the theoretical simulations on circularly polarized isolated attosecond pulses. C.H.-G., L.R. and L.P. worked on the theoretical methods and simulations of the full polarization control of HHG. P.-C.H., C.H.-G., J.-T.H., P.-Y.H., L.R., L.P. and M.-C.C. analysed data. P.-C.H., C.H.-G., L.P., M.M.M. and M.-C.C. wrote the manuscript, to which all authors suggested improvement.

Corresponding authors

Correspondence to Pei-Chi Huang or Ming-Chang Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes, figures and table

Supplementary Video 1

Interference patterns of circularly polarized extreme-ultraviolet pulses versus time delays.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, PC., Hernández-García, C., Huang, JT. et al. Polarization control of isolated high-harmonic pulses. Nature Photon 12, 349–354 (2018). https://doi.org/10.1038/s41566-018-0145-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing