Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Giant collimated gamma-ray flashes

Abstract

Bright sources of high-energy electromagnetic radiation are widely employed in fundamental research, industry and medicine1,2. This motivated the construction of Compton-based facilities planned to yield bright gamma-ray pulses with energies up to3 20 MeV. Here, we demonstrate a novel mechanism based on the strongly amplified synchrotron emission that occurs when a sufficiently dense ultra-relativistic electron beam interacts with a millimetre-thickness conductor. For electron beam densities exceeding approximately 3 × 1019 cm−3, electromagnetic instabilities occur, and the ultra-relativistic electrons travel through self-generated electromagnetic fields as large as 107–108 gauss. This results in the production of a collimated gamma-ray pulse with peak brilliance above 1025 photons s−1 mrad−2 mm−2 per 0.1% bandwidth, photon energies ranging from 200 keV to gigaelectronvolts and up to 60% electron-to-photon energy conversion efficiency. These findings pave the way to compact, high-repetition-rate (kilohertz) sources of short (30 fs), collimated (milliradian) and high-flux (>1012 photons s−1) gamma-ray pulses.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The transverse electron beam density.
Fig. 2: The longitudinal electron beam density.
Fig. 3: Electromagnetic fields.
Fig. 4: Number of emitted photons and conversion efficiency per electron.
Fig. 5: The photon beam brilliance.

References

  1. Bilderback, D. H., Elleaume, P. & Weckert, E. Review of third and next generation synchrotron light sources. J. Phys. B. 38, S773–S797 (2005).

    ADS  Article  Google Scholar 

  2. Ullrich, J., Rudenko, A. & Moshammer, R. Free-electron lasers: new avenues in molecular physics and photochemistry. Annu. Rev. Phys. Chem. 63, 635–660 (2012).

    ADS  Article  Google Scholar 

  3. Extreme Light Infrastructure - Nuclear Physics; http://www.eli-np.ro/

  4. Di Piazza, A., Müller, C., Hatsagortsyan, K. Z. & Keitel, C. H. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84, 1177–1228 (2012).

    ADS  Article  Google Scholar 

  5. Sarri, G. et al. Ultrahigh brilliance multi-MeV γ-ray beams from nonlinear relativistic Thomson scattering. Phys. Rev. Lett. 113, 224801 (2014).

    ADS  Article  Google Scholar 

  6. Phuoc, K. T. et al. All-optical Compton gamma-ray source. Nat. Photon. 6, 308–311 (2012).

    ADS  Article  Google Scholar 

  7. Jirka, M. et al. Electron dynamics and γ and e e + production by colliding laser pulses. Phys. Rev. E. 93, 023207 (2016).

    ADS  Article  Google Scholar 

  8. Gonoskov, A. et al. Ultrabright GeV photon source via controlled electromagnetic cascades in laser-dipole waves. Phys. Rev. X. 7, 041003 (2017).

    Google Scholar 

  9. Ridgers, C. P. et al. Dense electron–positron plasmas and ultraintense γ rays from laser-irradiated solids. Phys. Rev. Lett. 108, 165006 (2012).

    ADS  Article  Google Scholar 

  10. Nakamura, T. et al. High-power γ-ray flash generation in ultraintense laser–plasma interactions. Phys. Rev. Lett. 108, 195001 (2012).

    ADS  Article  Google Scholar 

  11. Stark, D. J., Toncian, T. & Arefiev, A. V. Enhanced multi-MeV photon emission by a laser-driven electron beam in a self-generated magnetic field. Phys. Rev. Lett. 116, 185003 (2016).

    ADS  Article  Google Scholar 

  12. Giulietti, A. et al. Intense γ-ray source in the giant-dipole-resonance range driven by 10-TW laser pulses. Phys. Rev. Lett. 101, 105002 (2008).

    ADS  Article  Google Scholar 

  13. Fill, E. E. Relativistic electron beams in conducting solids and dense plasmas: Approximate analytical theory. Phys. Plasmas 8, 1441–1444 (2001).

    ADS  Article  Google Scholar 

  14. Kittel, C. Introduction to Solid State Physics 8th edn (John Wiley and Sons, Hoboken NJ, 2005).

  15. Weibel, E. S. Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys. Rev. Lett. 2, 83–84 (1959).

    ADS  Article  Google Scholar 

  16. Bret, A., Firpo, M.-C. & Deutsch, C. Characterization of the initial filamentation of a relativistic electron beam passing through a plasma. Phys. Rev. Lett. 94, 115002 (2005).

    ADS  Article  Google Scholar 

  17. Califano, F., Del Sarto, D. & Pegoraro, F. Three-dimensional magnetic structures generated by the development of the filamentation (Weibel) instability in the relativistic regime. Phys. Rev. Lett. 96, 105008 (2006).

    ADS  Article  Google Scholar 

  18. Lee, R. & Lampe, M. Electromagnetic instabilities, filamentation, and focusing of relativistic electron beams. Phys. Rev. Lett. 31, 1390–1393 (1973).

    ADS  Article  Google Scholar 

  19. Askar’yan, G. A., Bulanov, S. V., Pegoraro, F. & Pukhov, A. M. Nonlinear evolution of ultrastrong laser pulses in a plasma – New phenomena of magnetic interaction between strong electromagnetic beams. Plasma Phys. Rep. 21, 835–846 (1995).

    ADS  Google Scholar 

  20. Califano, F., Pegoraro, F. & Bulanov, S. V. Spatial structure and time evolution of the Weibel instability in collisionless inhomogeneous plasmas. Phys. Rev. E. 56, 963–969 (1997).

    ADS  Article  Google Scholar 

  21. Lau, Y. Y. & Chu, K. R. Electron-cyclotron maser instability driven by a loss-cone distribution. Phys. Rev. Lett. 50, 243–246 (1983).

    ADS  Article  Google Scholar 

  22. D’Angelo, M., Fedeli, L., Sgattoni, A., Pegoraro, F. & Macchi, A. Particle acceleration and radiation friction effects in the filamentation instability of pair plasmas. Mon. Not. R. Astron. Soc. 451, 3460–3467 (2015).

    ADS  Article  Google Scholar 

  23. Hossain, M., Matthaeus, W. H. & Montgomery, D. Long-time states of inverse cascades in the presence of a maximum length scale. J. Plasma Phys. 30, 479–493 (1983).

    ADS  Article  Google Scholar 

  24. Leemans, W. P. et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys. Rev. Lett. 113, 245002 (2014).

    ADS  Article  Google Scholar 

  25. Wang, W. T. et al. High-brightness high-energy electron beams from a laser wakefield accelerator via energy chirp control. Phys. Rev. Lett. 117, 124801 (2016).

    ADS  Article  Google Scholar 

  26. Malka, V. et al. Principles and applications of compact laser-plasma accelerators. Nat. Phys. 4, 447–453 (2008).

    Article  Google Scholar 

  27. Bret, A., Firpo, M.-C. & Deutsch, C. Electromagnetic instabilities for relativistic beam-plasma interaction in whole k space: nonrelativistic beam and plasma temperature effects. Phys. Rev. E 72, 016403 (2005).

    ADS  Article  Google Scholar 

  28. Bret, A. & Deutsch, C. Stabilization of the filamentation instability and the anisotropy of the background plasma. Phys. Plasmas. 13, 022110 (2006).

    ADS  Article  Google Scholar 

  29. Baier, V. N., Katkov, V. M. & Strakhovenko, V. M. Electromagnetic Processes at High Energies in Oriented Single Crystals (World Scientific, Singapore, 1998).

  30. Tsai, Y.-S. Pair production and bremsstrahlung of charged leptons. Rev. Mod. Phys. 46, 815–851 (1974).

    ADS  Article  Google Scholar 

  31. Arber, T. D. et al. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Control. Fusion 57, 113001 (2015).

    ADS  Article  Google Scholar 

  32. Miller, R. B. An Introduction to the Physics of Intense Charged Particle Beams (Plenum Press, New York, 1982).

  33. Patrignani, C. et al. Review of particle physics. Chin. Phys. C 40, 100001 (2016).

  34. NIST Atomic Spectra Database version 5 (NIST, 2017); http://physics.nist.gov/asd.

  35. Molière, G. Theory of the scattering of fast charged particles. 2. Repeated and multiple scattering. Z. Nat. A 3, 78–97 (1948).

    Google Scholar 

  36. Bethe, H. A. Molière’s theory of multiple scattering. Phys. Rev. 89, 1256–1266 (1953).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  37. Rossi, B. & Greisen, K. Cosmic-ray theory. Rev. Mod. Phys. 13, 240–309 (1941).

    ADS  Article  Google Scholar 

  38. Koch, H. W. & Motz, J. W. Bremsstrahlung cross-section formulas and related data. Rev. Mod. Phys. 31, 920–955 (1959).

    ADS  Article  Google Scholar 

  39. Seltzer, S. M. & Berger, M. J. Bremsstrahlung energy spectra from electrons with kinetic energy 1 keV–10 GeV incident on screened nuclei and orbital electrons of neutral atoms with Z = 1–100. At. Data Nucl. Data Tables 35, 345–418 (1986).

    ADS  Article  Google Scholar 

  40. Landau, L. D. & Pomeranchuk, I. Ya. The limits of applicability of the theory of Bremsstrahlung by electrons and of the creation of pairs at large energies. Dokl. Akad. Nauk. SSSR 92, 535–536 (1953).

    MATH  Google Scholar 

  41. Landau, L. D. & Pomeranchuk, I.Ya. Electron-cascade processes at ultra-high energies. Dokl. Akad. Nauk. SSSR 92, 735–738 (1953).

    Google Scholar 

  42. Migdal, A. B. Bremsstrahlung and pair production in condensed media at high energies. Phys. Rev. 103, 1811–1820 (1956).

    ADS  Article  MATH  Google Scholar 

  43. Ritus, V. I. Quantum effects of the interaction of elementary particles with an intense electromagnetic field. J. Sov. Laser Res. 6, 497–617 (1985).

    Article  Google Scholar 

  44. Jackson, J. D. Classical Electrodynamics 3rd edn (John Wiley and Sons, New York, 1998).

  45. XCOM: Photon Cross Sections Database (NIST, 2010); https://www.nist.gov/pml/xcom-photon-cross-sections-database.

Download references

Acknowledgements

The authors would like to thank N. Kumar for valuable discussions and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

A.B. initially conceived the research project with input from M.T., configured and carried out the simulations, generated the figures and wrote the bulk of the manuscript. M.T. implemented the routines accounting for multiple scattering, bremsstrahlung and synchrotron radiation into the particle-in-cell code EPOCH. A.B. and M.T. discussed the physics, and analysed and interpreted the results of the simulations. C.H.K. supervised the project. All authors contributed to the preparation of the manuscript.

Corresponding author

Correspondence to Matteo Tamburini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes and figures

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benedetti, A., Tamburini, M. & Keitel, C.H. Giant collimated gamma-ray flashes. Nature Photon 12, 319–323 (2018). https://doi.org/10.1038/s41566-018-0139-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-018-0139-y

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing