Article | Published:

Improved photovoltaic performance from inorganic perovskite oxide thin films with mixed crystal phases

Nature Photonicsvolume 12pages271276 (2018) | Download Citation


Inorganic ferroelectric perovskites are attracting attention for the realization of highly stable photovoltaic cells with large open-circuit voltages. However, the power conversion efficiencies of devices have been limited so far. Here, we report a power conversion efficiency of ~4.20% under 1 sun illumination from Bi–Mn–O composite thin films with mixed BiMnO3 and BiMn2O5 crystal phases. We show that the photocurrent density and photovoltage mainly develop across grain boundaries and interfaces rather than within the grains. We also experimentally demonstrate that the open-circuit voltage and short-circuit photocurrent measured in the films are tunable by varying the electrical resistance of the device, which in turn is controlled by externally applying voltage pulses. The exploitation of multifunctional properties of composite oxides provides an alternative route towards achieving highly stable, high-efficiency photovoltaic solar energy conversion.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Glass, A. M., Linde, T. V. D. & Negran, T. J. High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3. Appl. Phys. Lett. 25, 233–235 (1974).

  2. 2.

    Koch, W. T. H., Munser, R., Ruppel, W. & Würfel, P. Bulk photovoltaic effect in BaTiO3. Solid State Commun. 17, 847–850 (1975).

  3. 3.

    Chynoweth, A. G. Surface space-charge layers in barium titanate. Phys. Rev. 102, 705–714 (1956).

  4. 4.

    Belinicher, V. I. & Sturman, B. I. The photogalvanic effect in media lacking a center of symmetry. Sov. Phys. Usp. 23, 199–223 (1980).

  5. 5.

    Lopez-Varo, P. et al. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion. Phys. Rep. 653, 1–40 (2016).

  6. 6.

    Sze, S. M. Semiconductor Devices: Physics and Technology (Wiley, New York, 2002).

  7. 7.

    Li, D. et al. Recent progress on stability issues of organic–inorganic hybrid lead perovskite-based solar cells. RSC Adv. 6, 89356–89366 (2016).

  8. 8.

    Bhatnagar, A., Chaudhuri, A., Kim, Y., Hesse, D. & Alexe, M. Role of domain walls in the abnormal photovoltaic effect in BiFeO3. Nat. Commun. 4, 2835 (2013).

  9. 9.

    Yang, S. Y. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotech. 5, 143–147 (2010).

  10. 10.

    Starkiewicz, J., Sosnowski, L. & Simpson, O. Photovoltaic effects exhibited in high-resistance semi-conducting films. Nature 158, 28 (1946).

  11. 11.

    Johnson, H. R., Williams, R. H. & Mee, C. H. B. The anomalous photovoltaic effect in cadmium telluride. J. Phys. D 8, 1530–1541 (1975).

  12. 12.

    Goldstein, B. & Pensak, L. High-voltage photovoltaic effect. J. Phys. D: Appl. Phys. 30, 155–161 (1959).

  13. 13.

    Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

  14. 14.

    Kholkin, A., Boiarkine, O. & Setter, N. Transient photocurrents in lead zirconate titanate thin films. Appl. Phys. Lett. 72, 130–132 (1998).

  15. 15.

    Nechache, R. et al. Bandgap tuning of multiferroic oxide solar cells. Nat. Photon. 9, 61–67 (2015).

  16. 16.

    Spanier, J. E. et al. Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator. Nat. Photon. 10, 611–616 (2016).

  17. 17.

    Kimura, T. et al. Magnetocapacitance effect in multiferroic BiMnO3. Phys. Rev. B 67, 180401 (2003).

  18. 18.

    Son, J. Y. & Shin, Y.-H. Multiferroic BiMnO3 thin films with double SrTiO3 buffer layers. Appl. Phys. Lett. 93, 062902 (2008).

  19. 19.

    Li, N., Yao, K., Gao, G., Sun, Z. & Li, L. Charge, orbital and spin ordering in multiferroic BiMn2O5: density functional theory calculations. Phys. Chem. Chem. Phys. 13, 9418–9424 (2011).

  20. 20.

    Xin, H. et al. Lithium-doping inverts the nanoscale electric field at the grain boundaries in Cu2ZnSn(S,Se)4 and increases photovoltaic efficiency. Phys. Chem. Chem. Phys. 17, 23859–23866 (2015).

  21. 21.

    Kalinin, S. V. & Bonnell, D. A. Surface potential at surface–interface junctions in SrTiO3 bicrystals. Phys. Rev. B 62, 10419–10430 (2000).

  22. 22.

    Zhou, Y. et al. Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nat. Photon. 9, 409–415 (2015).

  23. 23.

    Rau, U., Taretto, K. & Siebentritt, S. Grain boundaries in Cu(In,Ga)(Se,S)2 thin-film solar cells. Appl. Phys. A 96, 221–234 (2009).

  24. 24.

    Yun, J. S. et al. Benefit of grain boundaries in organic–inorganic halide planar perovskite solar cells. J. Phys. Chem. Lett. 6, 875–880 (2015).

  25. 25.

    Li, J. B., Chawla, V. & Clemens, B. M. Investigating the role of grain boundaries in CZTS and CZTSSe thin film solar cells with scanning probe microscopy. Adv. Mater. 24, 720–723 (2012).

  26. 26.

    Brody, P. S. & Crowne, F. Mechanism for the high voltage photovoltaic effect in ceramic ferroelectrics. J. Electron. Mater. 4, 955–971 (1975).

  27. 27.

    Zou, X. et al. Mechanism of polarization fatigue in BiFeO3. ACS Nano 6, 8997–9004 (2012).

  28. 28.

    Metzger, W. K. & Gloeckler, M. The impact of charged grain boundaries on thin-film solar cells and characterization. J. Appl. Phys. 98, 063701 (2005).

  29. 29.

    Scott, J. F., Araujo, C. A., Melnick, B. L., McMillan, L. D. & Zuleeg, R. Quantitative measurement of space‐charge effects in lead zirconate‐titanate memories. J. Appl. Phys. 70, 382–388 (1991).

  30. 30.

    Chen, X., Jia, C. H., Chen, Y. H., Yang, G. & Zhang, W. F. Ferroelectric memristive effect in BaTiO3 epitaxial thin films. J. Phys. D: Appl. Phys. 47, 365102 (2014).

  31. 31.

    Loh, E. A model of DC leakage in ceramic capacitors. J. Appl. Phys. 53, 6229–6235 (1982).

  32. 32.

    Neumann, H. & Arlt, G. Maxwell–Wagner relaxation and degradation of SrTiO3 and BaTiO3 ceramics. Ferroelectrics 69, 179–186 (1986).

  33. 33.

    Lehovec, K. & Shirn, G. A. Conductivity injection and extraction in polycrystalline barium titanate. J. Appl. Phys. 33, 2036–2044 (1962).

  34. 34.

    Lee, H. Y. & Burton, L. C. Charge carriers and time dependent currents in BaTiO3-based ceramic. IEEE Transac. Compon. Hybrid. Manufact. Tech. 9, 469–474 (1986).

  35. 35.

    Kholkin, A. L. & Setter, N. Photoinduced poling of lead titanate zirconate thin films. Appl. Phys. Lett. 71, 2854–2856 (1997).

  36. 36.

    Zerweck, U., Loppacher, C., Otto, T., Grafström, S. & Eng, L. M. Accuracy and resolution limits of Kelvin probe force microscopy. Phys. Rev. B 71, 125424 (2005).

Download references


The authors acknowledge infrastructure support from the Canada Foundation for Innovation. F.R. and R.N. are also supported by individual NSERC Discovery Grants. F.R. is grateful to the Canada Research Chairs programme for funding and partial salary support. F.R. acknowledges a Chang Jiang short-term chair professorship from the Government of China and Sichuan province for a short-term 1000 talent award. The authors acknowledge M. Moretti for assistance in performing C-AFM measurements.

Author information

Author notes

    • Joyprokash Chakrabartty

    Present address: Department of Electrical and Electronic Engineering, Chittagong University of Engineering and Technology (CUET), Chittagong, Bangladesh

    • Mert Celikin

    Present address: School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland


  1. Centre Énergie, Matériaux et Télécommunications, Institut national de la recherche scientifique (INRS), Varennes, QC, Canada

    • Joyprokash Chakrabartty
    • , Catalin Harnagea
    • , Mert Celikin
    •  & Federico Rosei
  2. Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, China

    • Federico Rosei
  3. Department of Electrical Engineering, École de Technologie Supérieure, Montréal, QC, Canada

    • Riad Nechache


  1. Search for Joyprokash Chakrabartty in:

  2. Search for Catalin Harnagea in:

  3. Search for Mert Celikin in:

  4. Search for Federico Rosei in:

  5. Search for Riad Nechache in:


J.C. conceived the ideas, designed the materials and device optimization strategy, carried out PLD growth, and fabricated the devices. J.C. and R.N characterized the PV properties, and performed the ellipsometry and EQE measurements. M.C. performed the TEM experiments that were further analysed by J.C., M.C. and R.N. J.C. and C.H. conducted and interpreted the PFM and KPFM experiments. J.C. and R.N. analysed the data of C-AFM experiments. J.C. performed the PV degradation experiments. C.H. elaborated the idea of the PV degradation mechanism. J.C., C.H., F.R. and R.N. contributed to the data analysis and discussions. All authors co-wrote the manuscript. F.R. and R.N. supervised the work.

Corresponding authors

Correspondence to Federico Rosei or Riad Nechache.

Supplementary information

  1. Supplementary Information

    Sample characterization information.

  2. Reporting Summary

About this article

Publication history