Improved photovoltaic performance from inorganic perovskite oxide thin films with mixed crystal phases

Abstract

Inorganic ferroelectric perovskites are attracting attention for the realization of highly stable photovoltaic cells with large open-circuit voltages. However, the power conversion efficiencies of devices have been limited so far. Here, we report a power conversion efficiency of ~4.20% under 1 sun illumination from Bi–Mn–O composite thin films with mixed BiMnO3 and BiMn2O5 crystal phases. We show that the photocurrent density and photovoltage mainly develop across grain boundaries and interfaces rather than within the grains. We also experimentally demonstrate that the open-circuit voltage and short-circuit photocurrent measured in the films are tunable by varying the electrical resistance of the device, which in turn is controlled by externally applying voltage pulses. The exploitation of multifunctional properties of composite oxides provides an alternative route towards achieving highly stable, high-efficiency photovoltaic solar energy conversion.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Mixed crystal phases and PV performance.
Fig. 2: EQE and optical absorption spectra.
Fig. 3: Surface photocurrent measurements by C-AFM performed on as-grown samples.
Fig. 4: Surface potential measured by KPFM performed on as-grown samples.
Fig. 5: Tunable photovoltages and photocurrents.

References

  1. 1.

    Glass, A. M., Linde, T. V. D. & Negran, T. J. High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3. Appl. Phys. Lett. 25, 233–235 (1974).

    ADS  Article  Google Scholar 

  2. 2.

    Koch, W. T. H., Munser, R., Ruppel, W. & Würfel, P. Bulk photovoltaic effect in BaTiO3. Solid State Commun. 17, 847–850 (1975).

    ADS  Article  Google Scholar 

  3. 3.

    Chynoweth, A. G. Surface space-charge layers in barium titanate. Phys. Rev. 102, 705–714 (1956).

    ADS  Article  Google Scholar 

  4. 4.

    Belinicher, V. I. & Sturman, B. I. The photogalvanic effect in media lacking a center of symmetry. Sov. Phys. Usp. 23, 199–223 (1980).

    ADS  Article  Google Scholar 

  5. 5.

    Lopez-Varo, P. et al. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion. Phys. Rep. 653, 1–40 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    Sze, S. M. Semiconductor Devices: Physics and Technology (Wiley, New York, 2002).

  7. 7.

    Li, D. et al. Recent progress on stability issues of organic–inorganic hybrid lead perovskite-based solar cells. RSC Adv. 6, 89356–89366 (2016).

    Article  Google Scholar 

  8. 8.

    Bhatnagar, A., Chaudhuri, A., Kim, Y., Hesse, D. & Alexe, M. Role of domain walls in the abnormal photovoltaic effect in BiFeO3. Nat. Commun. 4, 2835 (2013).

    Article  Google Scholar 

  9. 9.

    Yang, S. Y. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotech. 5, 143–147 (2010).

    ADS  Article  Google Scholar 

  10. 10.

    Starkiewicz, J., Sosnowski, L. & Simpson, O. Photovoltaic effects exhibited in high-resistance semi-conducting films. Nature 158, 28 (1946).

    ADS  Article  Google Scholar 

  11. 11.

    Johnson, H. R., Williams, R. H. & Mee, C. H. B. The anomalous photovoltaic effect in cadmium telluride. J. Phys. D 8, 1530–1541 (1975).

    ADS  Article  Google Scholar 

  12. 12.

    Goldstein, B. & Pensak, L. High-voltage photovoltaic effect. J. Phys. D: Appl. Phys. 30, 155–161 (1959).

    ADS  Google Scholar 

  13. 13.

    Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    ADS  Article  Google Scholar 

  14. 14.

    Kholkin, A., Boiarkine, O. & Setter, N. Transient photocurrents in lead zirconate titanate thin films. Appl. Phys. Lett. 72, 130–132 (1998).

    ADS  Article  Google Scholar 

  15. 15.

    Nechache, R. et al. Bandgap tuning of multiferroic oxide solar cells. Nat. Photon. 9, 61–67 (2015).

    ADS  Article  Google Scholar 

  16. 16.

    Spanier, J. E. et al. Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator. Nat. Photon. 10, 611–616 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Kimura, T. et al. Magnetocapacitance effect in multiferroic BiMnO3. Phys. Rev. B 67, 180401 (2003).

    ADS  Article  Google Scholar 

  18. 18.

    Son, J. Y. & Shin, Y.-H. Multiferroic BiMnO3 thin films with double SrTiO3 buffer layers. Appl. Phys. Lett. 93, 062902 (2008).

    ADS  Article  Google Scholar 

  19. 19.

    Li, N., Yao, K., Gao, G., Sun, Z. & Li, L. Charge, orbital and spin ordering in multiferroic BiMn2O5: density functional theory calculations. Phys. Chem. Chem. Phys. 13, 9418–9424 (2011).

    Article  Google Scholar 

  20. 20.

    Xin, H. et al. Lithium-doping inverts the nanoscale electric field at the grain boundaries in Cu2ZnSn(S,Se)4 and increases photovoltaic efficiency. Phys. Chem. Chem. Phys. 17, 23859–23866 (2015).

    Article  Google Scholar 

  21. 21.

    Kalinin, S. V. & Bonnell, D. A. Surface potential at surface–interface junctions in SrTiO3 bicrystals. Phys. Rev. B 62, 10419–10430 (2000).

    ADS  Article  Google Scholar 

  22. 22.

    Zhou, Y. et al. Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nat. Photon. 9, 409–415 (2015).

    ADS  Article  Google Scholar 

  23. 23.

    Rau, U., Taretto, K. & Siebentritt, S. Grain boundaries in Cu(In,Ga)(Se,S)2 thin-film solar cells. Appl. Phys. A 96, 221–234 (2009).

    ADS  Article  Google Scholar 

  24. 24.

    Yun, J. S. et al. Benefit of grain boundaries in organic–inorganic halide planar perovskite solar cells. J. Phys. Chem. Lett. 6, 875–880 (2015).

    Article  Google Scholar 

  25. 25.

    Li, J. B., Chawla, V. & Clemens, B. M. Investigating the role of grain boundaries in CZTS and CZTSSe thin film solar cells with scanning probe microscopy. Adv. Mater. 24, 720–723 (2012).

    Article  Google Scholar 

  26. 26.

    Brody, P. S. & Crowne, F. Mechanism for the high voltage photovoltaic effect in ceramic ferroelectrics. J. Electron. Mater. 4, 955–971 (1975).

    ADS  Article  Google Scholar 

  27. 27.

    Zou, X. et al. Mechanism of polarization fatigue in BiFeO3. ACS Nano 6, 8997–9004 (2012).

    Article  Google Scholar 

  28. 28.

    Metzger, W. K. & Gloeckler, M. The impact of charged grain boundaries on thin-film solar cells and characterization. J. Appl. Phys. 98, 063701 (2005).

    ADS  Article  Google Scholar 

  29. 29.

    Scott, J. F., Araujo, C. A., Melnick, B. L., McMillan, L. D. & Zuleeg, R. Quantitative measurement of space‐charge effects in lead zirconate‐titanate memories. J. Appl. Phys. 70, 382–388 (1991).

    ADS  Article  Google Scholar 

  30. 30.

    Chen, X., Jia, C. H., Chen, Y. H., Yang, G. & Zhang, W. F. Ferroelectric memristive effect in BaTiO3 epitaxial thin films. J. Phys. D: Appl. Phys. 47, 365102 (2014).

    ADS  Article  Google Scholar 

  31. 31.

    Loh, E. A model of DC leakage in ceramic capacitors. J. Appl. Phys. 53, 6229–6235 (1982).

    ADS  Article  Google Scholar 

  32. 32.

    Neumann, H. & Arlt, G. Maxwell–Wagner relaxation and degradation of SrTiO3 and BaTiO3 ceramics. Ferroelectrics 69, 179–186 (1986).

    Article  Google Scholar 

  33. 33.

    Lehovec, K. & Shirn, G. A. Conductivity injection and extraction in polycrystalline barium titanate. J. Appl. Phys. 33, 2036–2044 (1962).

    ADS  Article  Google Scholar 

  34. 34.

    Lee, H. Y. & Burton, L. C. Charge carriers and time dependent currents in BaTiO3-based ceramic. IEEE Transac. Compon. Hybrid. Manufact. Tech. 9, 469–474 (1986).

    Article  Google Scholar 

  35. 35.

    Kholkin, A. L. & Setter, N. Photoinduced poling of lead titanate zirconate thin films. Appl. Phys. Lett. 71, 2854–2856 (1997).

    ADS  Article  Google Scholar 

  36. 36.

    Zerweck, U., Loppacher, C., Otto, T., Grafström, S. & Eng, L. M. Accuracy and resolution limits of Kelvin probe force microscopy. Phys. Rev. B 71, 125424 (2005).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge infrastructure support from the Canada Foundation for Innovation. F.R. and R.N. are also supported by individual NSERC Discovery Grants. F.R. is grateful to the Canada Research Chairs programme for funding and partial salary support. F.R. acknowledges a Chang Jiang short-term chair professorship from the Government of China and Sichuan province for a short-term 1000 talent award. The authors acknowledge M. Moretti for assistance in performing C-AFM measurements.

Author information

Affiliations

Authors

Contributions

J.C. conceived the ideas, designed the materials and device optimization strategy, carried out PLD growth, and fabricated the devices. J.C. and R.N characterized the PV properties, and performed the ellipsometry and EQE measurements. M.C. performed the TEM experiments that were further analysed by J.C., M.C. and R.N. J.C. and C.H. conducted and interpreted the PFM and KPFM experiments. J.C. and R.N. analysed the data of C-AFM experiments. J.C. performed the PV degradation experiments. C.H. elaborated the idea of the PV degradation mechanism. J.C., C.H., F.R. and R.N. contributed to the data analysis and discussions. All authors co-wrote the manuscript. F.R. and R.N. supervised the work.

Corresponding authors

Correspondence to Federico Rosei or Riad Nechache.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Sample characterization information.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chakrabartty, J., Harnagea, C., Celikin, M. et al. Improved photovoltaic performance from inorganic perovskite oxide thin films with mixed crystal phases. Nature Photon 12, 271–276 (2018). https://doi.org/10.1038/s41566-018-0137-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing