Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fibre multi-wave mixing combs reveal the broken symmetry of Fermi–Pasta–Ulam recurrence

Abstract

In optical fibres, weak modulations can grow at the expense of a strong pump to form a triangular comb of sideband pairs, until the process is reversed. Repeated cycles of such conversion and back-conversion constitute a manifestation of the universal nonlinear phenomenon known as Fermi–Pasta–Ulam recurrence. However, it remains a major challenge to observe the coexistence of different types of recurrences owing to the spontaneous symmetry-breaking nature of such a phenomenon. Here, we implement a novel non-destructive technique that allows the evolution in amplitude and phase of frequency modes to be reconstructed via post-processing of the fibre backscattered light. We clearly observe how control of the input modulation seed results in different recursive behaviours emerging from the phase-space structure dictated by the spontaneously broken symmetry. The proposed technique is an important tool to characterize other mixing processes and new regimes of rogue-wave formation and wave turbulence in fibre optics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spontaneous symmetry-breaking of modulational instability and FPU.
Fig. 2: Homoclinic crossing and period doubling in fibre FPU recurrence.
Fig. 3: The novel measurement technique.
Fig. 4: Observed recurrences and their phase-plane projections.

Similar content being viewed by others

References

  1. Fermi, E., Pasta, J. & Ulam, S. in Collected Papers of Enrico Fermi Vol. 2 (ed. Segré, E.) 977–988 (Univ. Chicago Press, Chicago, Illinois, 1965).

  2. Porter, M. A., Zabusky, N. J., Hu, B. & Campbell, D. K. Fermi, Pasta, Ulam and the birth of experimental mathematics. Am. Sci. 97, 214–221 (2009).

    Article  Google Scholar 

  3. Onorato, M., Vozella, L., Proment, D. & Lvov, Y. V. Route to thermalization in the α-Fermi–Pasta–Ulam system. Proc. Natl Acad. Sci. USA 112, 4208–4213 (2015).

    Article  ADS  Google Scholar 

  4. Tai, K., Hasegawa, A. & Tomita, A. Observation of modulation instability in optical fibers. Phys. Rev. Lett. 56, 135–138 (1986).

    Article  ADS  Google Scholar 

  5. Zakharov, V. E. & Ostrovsky, L. A. Modulation instability: the beginning. Phys. D 238, 540–548 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  6. Akhmediev, N. N. Nonlinear physics: déjà vu in optics. Nature 413, 267–268 (2001).

    Article  ADS  Google Scholar 

  7. Van Simaeys, G., Emplit, Ph. & Haelterman, M. Experimental demonstration of the Fermi–Pasta–Ulam recurrence in a modulationally unstable optical wave. Phys. Rev. Lett. 87, 033902 (2001).

    Article  ADS  Google Scholar 

  8. Van Simaeys, G., Emplit, Ph. & Haelterman, M. Experimental study of the reversible behaviour of modulational instability in optical fibres. J. Opt. Soc. Am. B 19, 477–486 (2002).

    Article  ADS  Google Scholar 

  9. Beeckman, J., Hutsebaut, X., Haelterman, M. & Neyts, K. Induced modulation instability and recurrence in nematic liquid crystals. Opt. Express 18, 11185–11195 (2007).

    Article  ADS  Google Scholar 

  10. Wabnitz, S. & Wetzel, B. Instability and noise-induced thermalization of Fermi–Pasta–Ulam recurrence in the nonlinear Schrödinger equation. Phys. Lett. A 378, 2750–2756 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Guasoni, M. et al. Incoherent Fermi–Pasta–Ulam recurrences and unconstrained thermalization mediated by strong phase correlations. Phys. Rev. X 7, 011025 (2017).

    Google Scholar 

  12. Grinevich, P. G. & Santini, P. M. The exact rogue wave recurrence in the NLS periodic setting via matched asymptotic expansions, for 1 and 2 unstable modes. Preprint at https://arxiv.org/abs/1708.04535 (2017).

  13. Bao, C. et al. Observation of Fermi–Pasta–Ulam recurrence induced by breather solitons in an optical microresonator. Phys. Rev. Lett. 117, 163901 (2016).

    Article  ADS  Google Scholar 

  14. Närhi, M. et al. Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability. Nat. Commun. 7, 13675 (2016).

    Article  ADS  Google Scholar 

  15. Soto-Crespo, J. M., Devine, N. & Akhmediev, N. Integrable turbulence and rogue waves: breathers or solitons? Phys. Rev. Lett. 116, 103901 (2016).

    Article  ADS  Google Scholar 

  16. Kibler, B., Chabchoub, A., Gelash, A. N., Akhmediev, N. & Zakharov, V. E. Super-regular breathers in optics and hydrodynamics: omnipresent modulation instability beyond simple periodicity. Phys. Rev. X 5, 041026 (2015).

    Google Scholar 

  17. Toenger, S. et al. Emergent rogue wave structures and statistics in spontaneous modulation instability. Sci. Rep. 5, 10380 (2015).

    Article  ADS  Google Scholar 

  18. Bendhamane, A. et al. Optimal frequency conversion in the nonlinear stage of modulation instability. Opt. Express 23, 30861–30871 (2015).

    Article  ADS  Google Scholar 

  19. Biondini, G. & Mantzavinos, D. Universal nature of the nonlinear stage of modulational instability. Phys. Rev. Lett. 116, 043902 (2016).

    Article  ADS  MATH  Google Scholar 

  20. Chin, S. A., Ashour, O. A. & Belić, M. R. Anatomy of the Akhmediev breather: cascading instability, first formation time, and Fermi–Pasta–Ulam recurrence. Phys. Rev. E 92, 063202 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  21. Mussot, A., Kudlinski, A., Droques, M., Szriftgiser, P. & Akhmediev, N. Fermi–Pasta–Ulam recurrence in nonlinear fiber optics: the role of reversible and irreversible losses. Phys. Rev. X 4, 011054 (2014).

    Google Scholar 

  22. Erkintalo, M. et al. Higher-order modulation instability in nonlinear fibre optics. Phys. Rev. Lett. 107, 253901 (2011).

    Article  ADS  Google Scholar 

  23. Kibler, B. et al. The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 6, 790–795 (2010).

    Article  Google Scholar 

  24. Dudley, J. M., Genty, G., Dias, F., Kibler, B. & Akhmediev, N. Modulation instability, Akhmediev breathers and continuous wave supercontinuum generation. Opt. Express 17, 21497–21508 (2009).

    Article  ADS  Google Scholar 

  25. Onorato, M., Residori, S., Bortolozzo, U., Montina, A. & Arecchi, F. T. Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528, 47–89 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  26. Dudley, J. M., Dias, F., Erkintalo, M. & Genty, G. Instabilities, breathers and rogue waves in optics. Nat. Photon. 8, 755–764 (2014).

    Article  ADS  Google Scholar 

  27. Akhmediev, N. N., Eleonoskii, V. M. & Kulagin, N. E. Generation of periodic trains of picosecond pulses in an optical fibre: exact solutions. Sov. Phys. JETP 62, 894–899 (1985).

    Google Scholar 

  28. Akhmediev, N. N., Eleonskii, V. M. & Kulagin, N. E. Exact first-order solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 72, 809–818 (1987).

    Article  MATH  Google Scholar 

  29. Ablowitz, M. J. & Herbst, B. M. On homoclinic structure and numerically induced chaos for the nonlinear Schrödinger equation. SIAM J. Appl. Math. 50, 339–351 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  30. Moon, H. T. Homoclinic crossings and pattern selection. Phys. Rev. Lett. 64, 412–414 (1990).

    Article  ADS  Google Scholar 

  31. Trillo, S. & Wabnitz, S. Dynamics of the modulational instability in optical fibers. Opt. Lett. 16, 986–988 (1991).

    Article  ADS  Google Scholar 

  32. Trillo, S. & Wabnitz, S. Self-injected spatial mode locking and coherent all-optical FM/AM switching based on modulational instability. Opt. Lett. 16, 1566–1568 (1991).

    Article  ADS  Google Scholar 

  33. Liu, C. Spontaneous symmetry breaking and chance in a classical world. Philos. Sci. 70, 590–608 (2003).

    Article  MathSciNet  Google Scholar 

  34. Kimmoun, O. et al. Modulation Instability and phase-shifted Fermi–Pasta–Ulam recurrence. Sci. Rep. 6, 28516 (2016).

    Article  ADS  Google Scholar 

  35. Ablowitz, M. J., Hammack, J., Henderson, D. & Schober, C. M. Modulated periodic Stokes waves in deep water. Phys. Rev. Lett. 84, 887–890 (2000).

    Article  ADS  MATH  Google Scholar 

  36. Cappellini, G. & Trillo, S. Third-order three-wave mixing in single-mode fibres: exact solutions and spatial instability effects. J. Opt. Soc. Am. B 8, 824–834 (1991).

    Article  ADS  Google Scholar 

  37. Butikov, E. I. The rigid pendulum—an antique but evergreen physical model. Eur. J. Phys. 20, 429–441 (1999).

    Article  Google Scholar 

  38. Healey, P. Fading in heterodyne OTDR. Electron. Lett. 20, 30–32 (1984).

    Article  Google Scholar 

  39. Deng, G., Li, S., Biondini, G. & Trillo, S. Recurrence due to periodic multisoliton fission in the defocusing nonlinear Schrödinger equation. Phys. Rev. E 96, 052213 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Agence Nationale de la Recherche through the High Energy All Fiber Systems (HEAFISY) and Nonlinear dynamics of Abnormal Wave Events (NoAWE) projects, the Labex Centre Europeen pour les Mathematiques, la Physique et leurs Interactions (CEMPI) and Equipex Fibres optiques pour les hauts flux (FLUX) through the ‘Programme Investissements d’Avenir’, by the Ministry of Higher Education and Research, Hauts de France council and European Regional Development Fund (ERDF) through the Contrat de Projets Etat-Region (CPER Photonics for Society, P4S) and FEDER through the HEAFISY project.

Author information

Authors and Affiliations

Authors

Contributions

A.M. and P.S. conceived the experimental setup. A.M., C.N., A.K., F.C. and P.S. worked on the experiment. M.C. and S.T. developed the theoretical aspects. A.M., S.T., M.C. and C.N. performed numerical simulations. All authors contributed to analysing the data and writing the paper.

Corresponding authors

Correspondence to Arnaud Mussot or Stefano Trillo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes and figures, and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mussot, A., Naveau, C., Conforti, M. et al. Fibre multi-wave mixing combs reveal the broken symmetry of Fermi–Pasta–Ulam recurrence. Nature Photon 12, 303–308 (2018). https://doi.org/10.1038/s41566-018-0136-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-018-0136-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing