Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs

A Publisher Correction to this article was published on 01 June 2018

This article has been updated

Abstract

Mid-infrared spectroscopy offers supreme sensitivity for the detection of trace gases, solids and liquids based on tell-tale vibrational bands specific to this spectral region. Here, we present a new platform for mid-infrared dual-comb Fourier-transform spectroscopy based on a pair of ultra-broadband subharmonic optical parametric oscillators pumped by two phase-locked thulium-fibre combs. Our system provides fast (7 ms for a single interferogram), moving-parts-free, simultaneous acquisition of 350,000 spectral data points, spaced by a 115 MHz intermodal interval over the 3.1–5.5 µm spectral range. Parallel detection of 22 trace molecular species in a gas mixture, including isotopologues containing isotopes such as 13C, 18O, 17O, 15N, 34S, 33S and deuterium, with part-per-billion sensitivity and sub-Doppler resolution is demonstrated. The technique also features absolute optical frequency referencing to an atomic clock, a high degree of mutual coherence between the two mid-infrared combs with a relative comb-tooth linewidth of 25 mHz, coherent averaging and feasibility for kilohertz-scale spectral resolution.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Subharmonic OPOs and their comb-mode structure.
Fig. 2: Mode-resolved DCS spectra.
Fig. 3: DCS spectra of a mixture of gases.
Fig. 4: Spectra of isotopologues detected in a mixture of gases at 3 mbar.
Fig. 5: Spectra of trace molecules in ambient air at 10 mbar.
Fig. 6: Noise and the number of averages.

Change history

  • 01 June 2018

    In the version of this Article originally published, in equation (9), the ‘Δ’ in the first ‘Δfrep’ shouldn’t have been included and, in equation (10), within the brackets, frep and f were the wrong way round. These equations have now been corrected in the online versions.

References

  1. Galli, I. et al. Spectroscopic detection of radiocarbon dioxide at parts-per-quadrillion sensitivity. Optica 3, 385–388 (2016).

    Article  Google Scholar 

  2. Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    Article  ADS  Google Scholar 

  3. Schliesser, A., Picqué, N. & Hänsch, T. W. Mid-infrared frequency combs. Nat. Photon. 6, 440–449 (2012).

    Article  ADS  Google Scholar 

  4. Diddams, S. A., Hollberg, L. & Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445, 627–630 (2007).

    Article  Google Scholar 

  5. Nugent-Glandorf, L. et al. Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection. Opt. Lett. 37, 3285–3287 (2012).

    Article  ADS  Google Scholar 

  6. Fleisher, A. J. et al. Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals. J. Phys. Chem. Lett. 5, 2241–2246 (2015).

    Article  Google Scholar 

  7. Foltynowicz, A. et al. Optical frequency comb spectroscopy. Faraday Discuss. 150, 23–31 (2011).

    Article  ADS  Google Scholar 

  8. Haakestad, M. W., Lamour, T. P., Leindecker, N., Marandi, A. & Vodopyanov, K. L. Intracavity trace molecular detection with a broadband mid-IR frequency comb source. J. Opt. Soc. Am. B 30, 631–640 (2013).

    Article  ADS  Google Scholar 

  9. Meek, S. A., Poisson, A., Guelachvili, G., Hänsch, T. W. & Picqué, N. Fourier transform spectroscopy around 3 μm with a broad difference frequency comb. Appl. Phys. B 114, 573–578 (2014).

    Article  ADS  Google Scholar 

  10. Khodabakhsh, A. et al. Fourier transform and Vernier spectroscopy using an optical frequency comb at 3–5.4 μm. Opt. Lett. 41, 2541–2544 (2016).

    Article  ADS  Google Scholar 

  11. Maslowski, P. et al. Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs. Phys. Rev. A 93, 021802(R) (2016).

    Article  ADS  Google Scholar 

  12. Keilmann, F., Gohle, C. & Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 29, 1542–1544 (2004).

    Article  ADS  Google Scholar 

  13. Schliesser, A., Brehm, M., Keilmann, F. & van der Weide, D. W. Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Opt. Express 13, 9029–9038 (2005).

    Article  ADS  Google Scholar 

  14. Coddington, I., Newbury, N. & Swann, W. Dual-comb spectroscopy. Optica 3, 414–426 (2016).

    Article  Google Scholar 

  15. Coddington, I., Swann, W. C. & Newbury, N. R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100, 013902 (2008).

    Article  ADS  Google Scholar 

  16. Coddington, I., Swann, W. C. & Newbury, N. R. Time-domain spectroscopy of molecular free-induction decay in the infrared. Opt. Lett. 35, 1395–1397 (2010).

    Article  ADS  Google Scholar 

  17. Zolot, A. M. et al. Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz. Opt. Lett. 37, 638–640 (2012).

    Article  ADS  Google Scholar 

  18. Bernhardt, B. et al. Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers. Appl. Phys. B 100, 3–8 (2010).

    Article  ADS  Google Scholar 

  19. Zhang, Z., Gardiner, T. & Reid, D. T. Mid-infrared dual-comb spectroscopy with an optical parametric oscillator. Opt. Lett. 38, 3148–3150 (2013).

    Article  ADS  Google Scholar 

  20. Cruz, F. C. et al. Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy. Opt. Express 23, 26814–26824 (2015).

    Article  ADS  Google Scholar 

  21. Jin, Y. W., Cristescu, S. M., Harren, F. J. M. & Mandon, J. Femtosecond optical parametric oscillators toward real-time dual-comb spectroscopy. Appl. Phys. B 119, 65–74 (2015).

    Article  ADS  Google Scholar 

  22. Zhu, F. et al. Mid-infrared dual frequency comb spectroscopy based on fiber lasers for the detection of methane in ambient air. Laser Phys. Lett. 12, 095701 (2015).

    Article  ADS  Google Scholar 

  23. Kara, O., Zhang, Z., Gardiner, T. & Reid, D. T. Dual-comb mid-infrared spectroscopy with free-running oscillators and absolute optical calibration from a radio-frequency reference. Opt. Express 25, 16072–16082 (2017).

    Article  ADS  Google Scholar 

  24. Maser, D. L., Ycas, G., Depetri, W. I., Cruz, F. C. & Diddams, S. A. Coherent frequency combs for spectroscopy across the 3–5 μm region. Appl. Phys. B 123, 142 (2017).

    Article  ADS  Google Scholar 

  25. Baumann, E. et al. Spectroscopy of the methane ν 3 band with an accurate midinfrared coherent dual-comb spectrometer. Phys. Rev. A 84, 062513 (2011).

    Article  ADS  Google Scholar 

  26. Villares, G., Hugi, A., Blaser, S. & Faist, J. Dual-comb spectroscopy based on quantum cascade laser frequency combs. Nat. Commun. 5, 5192 (2014).

    Article  ADS  Google Scholar 

  27. Vodopyanov, K. L., Wong, S. T. & Byer, R. L. Infrared frequency comb methods, arrangements and applications. US patent 8,384,990 (2013).

  28. Leindecker, N., Marandi, A., Byer, R. L. & Vodopyanov, K. L. Broadband degenerate OPO for mid-infrared frequency comb generation. Opt. Express 19, 6304–6310 (2011).

    Article  ADS  Google Scholar 

  29. Marandi, A., Leindecker, N., Pervak, V., Byer, R. L. & Vodopyanov, K. L. Coherence properties of a broadband femtosecond mid-IR optical parametric oscillator operating at degeneracy. Opt. Express 20, 7255–7262 (2012).

    Article  ADS  Google Scholar 

  30. Smolski, V. O., Yang, H., Gorelov, S. D., Schunemann, P. G. & Vodopyanov, K. L. Coherence properties of a 2.6–7.5-μm frequency comb produced as subharmonic of a Tm-fiber laser. Opt. Lett. 41, 1388–1391 (2016).

    Article  ADS  Google Scholar 

  31. Lee, K. F. et al. Midinfrared frequency combs from coherent supercontinuum in chalcogenide and optical parametric oscillation. Opt. Lett. 39, 2056–2059 (2014).

    Article  ADS  Google Scholar 

  32. Lee, K. F. et al. Midinfrared frequency comb from self-stable degenerate GaAs optical parametric oscillator. Opt. Express 23, 26596–26603 (2015).

    Article  ADS  Google Scholar 

  33. Fermann, M. E. & Hartl, I. Ultrafast fibre lasers. Nat. Photon 7, 868–874 (2013).

    Article  ADS  Google Scholar 

  34. Roy, J., Deschênes, J.-D., Potvin, S. & Genest, J. Continuous real time correction and averaging for frequency comb interferometry. Opt. Express 20, 21932–21939 (2012).

    Article  ADS  Google Scholar 

  35. Ideguchi, T., Poisson, A., Guelachvili, G., Picqué, N. & Hänsch, T. W. Adaptive real-time dual-comb spectroscopy. Nat. Commun. 5, 3375 (2014).

    Article  ADS  Google Scholar 

  36. Coddington, I., Swann, W. C. & Newbury, N. R. Coherent dual-comb spectroscopy at high signal-to-noise ratio. Phys. Rev. A 82, 043817 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

K.L.V. acknowledges support from the Office of Naval Research (ONR), grant number N00014-15-1-2659 and from the Defense Advanced Research Projects Agency (DARPA), grant number W31P4Q-15-1-0008. Z.E.L. acknowledges support from the National Science Foundation under Graduate Research Fellowship Program, grant number 1144246. We thank J. Jiang and K. Lee for sharing their expertise on the Tm-fibre frequency combs, and N. Newbury and S. Diddams for stimulating discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.V.M. and V.O.S. constructed the experimental setup. A.V.M. carried out the measurements and analysed the data. Z.E.L. developed the algorithm for data acquisition and processing. K.L.V. initiated and supervised the project; he also analysed the data and wrote the paper.

Corresponding author

Correspondence to K. L. Vodopyanov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muraviev, A.V., Smolski, V.O., Loparo, Z.E. et al. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs. Nature Photon 12, 209–214 (2018). https://doi.org/10.1038/s41566-018-0135-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-018-0135-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing