Bridging ultrahigh-Q devices and photonic circuits

Abstract

Optical microresonators are essential to a broad range of technologies and scientific disciplines. However, many of their applications rely on discrete devices to attain challenging combinations of ultra-low-loss performance (ultrahigh Q) and resonator design requirements. This prevents access to scalable fabrication methods for photonic integration and lithographic feature control. Indeed, finding a microfabrication bridge that connects ultrahigh-Q device functions with photonic circuits is a priority of the microcavity field. Here, an integrated resonator having a record Q factor over 200 million is presented. Its ultra-low-loss and flexible cavity design brings performance to integrated systems that has been the exclusive domain of discrete silica and crystalline microcavity devices. Two distinctly different devices are demonstrated: soliton sources with electronic repetition rates and high-coherence/low-threshold Brillouin lasers. This multi-device capability and performance from a single integrated cavity platform represents a critical advance for future photonic circuits and systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Micrograph images and fabrication process for integrated ultrahigh-Q optical resonator.
Fig. 2: Spectral scan and ring-down measurement of integrated resonator, as well as study of waveguide–resonator phase matching.
Fig. 3: Demonstration of 15 GHz repetition rate temporal solitons in an integrated optical resonator.
Fig. 4: Demonstration of Brillouin lasing in an integrated optical resonator.
Fig. 5: Hermetic encapsulation of the integrated UHQ resonator.

References

  1. 1.

    Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    ADS  Article  Google Scholar 

  2. 2.

    Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    ADS  Article  Google Scholar 

  3. 3.

    Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    ADS  Article  Google Scholar 

  4. 4.

    Yi, X., Yang, Q.-F., Yang, K. Y., Suh, M.-G. & Vahala, K. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica 2, 1078–1085 (2015).

    Article  Google Scholar 

  5. 5.

    Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Joshi, C. et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41, 2565–2568 (2016).

    ADS  Article  Google Scholar 

  7. 7.

    Wang, P.-H. et al. Intracavity characterization of micro-comb generation in the single-soliton regime. Opt. Express 24, 10890–10897 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Tomes, M. & Carmon, T. Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates. Phys. Rev. Lett. 102, 113601 (2009).

    ADS  Article  Google Scholar 

  9. 9.

    Grudinin, I. S., Matsko, A. B. & Maleki, L. Brillouin lasing with a CaF2 whispering gallery mode resonator. Phys. Rev. Lett. 102, 043902 (2009).

    ADS  Article  Google Scholar 

  10. 10.

    Lee, H. et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photon. 6, 369–373 (2012).

    ADS  Article  Google Scholar 

  11. 11.

    Morrison, B. et al. Compact Brillouin devices through hybrid integration on silicon. Optica 4, 847–854 (2017).

    Article  Google Scholar 

  12. 12.

    Otterstrom, N. T., Behunin, R. O., Kittlaus, E. A., Wang, Z. & Rakich, P. T. A silicon Brillouin laser. Preprint at http://arXiv.org/abs/1705.05813 (2017).

  13. 13.

    Vollmer, F. & Arnold, S. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat. Methods 5, 591–596 (2008).

    Article  Google Scholar 

  14. 14.

    Vollmer, F. & Yang, L. Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics 1, 267–291 (2012).

    ADS  Article  Google Scholar 

  15. 15.

    Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008).

    ADS  Article  Google Scholar 

  16. 16.

    Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).

    ADS  Article  Google Scholar 

  17. 17.

    Savchenkov, A. A. et al. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Phys. Rev. Lett. 93, 243905 (2004).

    ADS  Article  Google Scholar 

  18. 18.

    Spillane, S., Kippenberg, T. & Vahala, K. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 415, 621–623 (2002).

    ADS  Article  Google Scholar 

  19. 19.

    Matsko, A. B., Savchenkov, A. A., Yu, N. & Maleki, L. Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations. J. Opt. Soc. Am. B 24, 1324–1335 (2007).

    ADS  MathSciNet  Article  Google Scholar 

  20. 20.

    Alnis, J. et al. Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization. Phys. Rev. A 84, 011804 (2011).

    ADS  Article  Google Scholar 

  21. 21.

    Lee, H. et al. Spiral resonators for on-chip laser frequency stabilization. Nat. Commun. 4, 2468 (2013).

    Google Scholar 

  22. 22.

    Loh, W. et al. Dual-microcavity narrow-linewidth Brillouin laser. Optica 2, 225–232 (2015).

    Article  Google Scholar 

  23. 23.

    Aoki, T. et al. Observation of strong coupling between one atom and a monolithic microresonator. Nature 443, 671–674 (2006).

    ADS  Article  Google Scholar 

  24. 24.

    Xiong, C., Pernice, W. H. & Tang, H. X. Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing. Nano Lett. 12, 3562–3568 (2012).

    ADS  Article  Google Scholar 

  25. 25.

    Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).

    ADS  Article  Google Scholar 

  26. 26.

    Hausmann, B., Bulu, I., Venkataraman, V., Deotare, P. & Lončar, M. Diamond nonlinear photonics. Nat. Photon. 8, 369–374 (2014).

    ADS  Article  Google Scholar 

  27. 27.

    Lu, X., Lee, J. Y. & Lin, Q. High-frequency and high-quality silicon carbide optomechanical microresonators. Sci. Rep. 5, 17005 (2015).

    ADS  Article  Google Scholar 

  28. 28.

    Lu, X. et al. Heralding single photons from a high-Q silicon microdisk. Optica 3, 1331–1338 (2016).

    Article  Google Scholar 

  29. 29.

    Levy, J. S. et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photon. 4, 37–40 (2010).

    ADS  Article  Google Scholar 

  30. 30.

    Ramiro-Manzano, F., Prtljaga, N., Pavesi, L., Pucker, G. & Ghulinyan, M. A fully integrated high-Q whispering-gallery wedge resonator. Opt. Express 20, 22934–22942 (2012).

    ADS  Article  Google Scholar 

  31. 31.

    Jung, H., Xiong, C., Fong, K. Y., Zhang, X. & Tang, H. X. Optical frequency comb generation from aluminum nitride microring resonator. Opt. Lett. 38, 2810–2813 (2013).

    ADS  Article  Google Scholar 

  32. 32.

    Spencer, D. T., Bauters, J. F., Heck, M. J. & Bowers, J. E. Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime. Optica 1, 153–157 (2014).

    Article  Google Scholar 

  33. 33.

    Xuan, Y. et al. High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation. Optica 3, 1171–1180 (2016).

    Article  Google Scholar 

  34. 34.

    Pfeiffer, M. H. et al. Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics. Optica 3, 20–25 (2016).

    Article  Google Scholar 

  35. 35.

    Ji, X. et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica 4, 619–624 (2017).

    Article  Google Scholar 

  36. 36.

    Grudinin, I. S., Ilchenko, V. S. & Maleki, L. Ultrahigh optical Q factors of crystalline resonators in the linear regime. Phys. Rev. A 74, 063806 (2006).

    ADS  Article  Google Scholar 

  37. 37.

    Armani, D., Kippenberg, T., Spillane, S. & Vahala, K. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).

    ADS  Article  Google Scholar 

  38. 38.

    Papp, S. B. & Diddams, S. A. Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb. Phys. Rev. A 84, 053833 (2011).

    ADS  Article  Google Scholar 

  39. 39.

    Papp, S. B. et al. Microresonator frequency comb optical clock. Optica 1, 10–14 (2014).

    Article  Google Scholar 

  40. 40.

    Spencer, D. T. et al. An integrated-photonics optical-frequency synthesizer. Preprint at http://arXiv.org/abs/1708.05228 (2017).

  41. 41.

    Li, J., Suh, M.-G. & Vahala, K. Microresonator Brillouin gyroscope. Optica 4, 346–348 (2017).

    Article  Google Scholar 

  42. 42.

    Liang, W. et al. Resonant microphotonic gyroscope. Optica 4, 114–117 (2017).

    Article  Google Scholar 

  43. 43.

    Maleki, L. Sources: the optoelectronic oscillator. Nat. Photon. 5, 728–730 (2011).

    MathSciNet  Article  Google Scholar 

  44. 44.

    Li, J., Lee, H. & Vahala, K. J. Microwave synthesizer using an on-chip Brillouin oscillator. Nat. Commun. 4, 2097 (2013).

    ADS  Google Scholar 

  45. 45.

    Li, J., Yi, X., Lee, H., Diddams, S. A. & Vahala, K. J. Electro-optical frequency division and stable microwave synthesis. Science 345, 309–313 (2014).

    ADS  Article  Google Scholar 

  46. 46.

    Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015).

    Article  Google Scholar 

  47. 47.

    Komljenovic, T. et al. Heterogeneous silicon photonic integrated circuits. J. Light. Technol. 34, 20–35 (2016).

    ADS  Article  Google Scholar 

  48. 48.

    Piels, M., Bauters, J. F., Davenport, M. L., Heck, M. J. & Bowers, J. E. Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III–V/silicon photodetectors. J. Light. Technol. 32, 817–823 (2014).

    ADS  Article  Google Scholar 

  49. 49.

    Spillane, S., Kippenberg, T., Painter, O. & Vahala, K. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91, 043902 (2003).

    ADS  Article  Google Scholar 

  50. 50.

    Pfeiffer, M. H., Liu, J., Geiselmann, M. & Kippenberg, T. J. Coupling ideality of integrated planar high-Q microresonators. Phys. Rev. Appl. 7, 024026 (2017).

    ADS  Article  Google Scholar 

  51. 51.

    Pfeiffer, M. H. et al. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica 4, 684–691 (2017).

    Article  Google Scholar 

  52. 52.

    Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

    Google Scholar 

  53. 53.

    Li, Q. et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica 4, 193–203 (2017).

    Article  Google Scholar 

  54. 54.

    Yi, X., Yang, Q.-F., Yang, K. Y. & Vahala, K. Active capture and stabilization of temporal solitons in microresonators. Opt. Lett. 41, 2037–2040 (2016).

    ADS  Article  Google Scholar 

  55. 55.

    Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    ADS  Article  Google Scholar 

  56. 56.

    Eggleton, B. J., Poulton, C. G. & Pant, R. Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits. Adv. Opt. Photon. 5, 536–587 (2013).

    Article  Google Scholar 

  57. 57.

    Li, J., Lee, H., Chen, T. & Vahala, K. J. Characterization of a high coherence, Brillouin microcavity laser on silicon. Opt. Express 20, 20170–20180 (2012).

    ADS  Article  Google Scholar 

  58. 58.

    Gorodetsky, M. L. & Grudinin, I. S. Fundamental thermal fluctuations in microspheres. J. Opt. Soc. Am. B 21, 697–705 (2004).

    ADS  Article  Google Scholar 

  59. 59.

    Matsko, A. B. & Maleki, L. On timing jitter of mode locked Kerr frequency combs. Opt. Express 21, 28862–28876 (2013).

    ADS  Article  Google Scholar 

  60. 60.

    Barkai, A. et al. Integrated silicon photonics for optical networks. J. Opt. Netw. 6, 25–47 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank O. Painter and B. Baker for assistance with the PECVD silicon nitride process, H. Atwater and W.-H. Cheng for assistance with silica atomic layer deposition, M. Hunt for assistance with electron-beam microscopy, Y.-H. Lai for technical assistance, and A. Matsko and J. Bowers for helpful discussions. We also gratefully acknowledge the Defense Advanced Research Projects Agency under the DODOS (award no. HR0011-15-C-0055, sub award KK1540) and PRIGM:AIMS (grant no. N66001-16-1-4046) programs and the Kavli Nanoscience Institute.

Author information

Affiliations

Authors

Contributions

K.Y.Y., D.Y.O., S.H.L. and K.V. conceived the fabrication process and resonator design. K.Y.Y., D.Y.O. and S.H.L. fabricated and tested the resonator structures with assistance from B.S. and H.W. K.Y.Y., D.Y.O., S.H.L., Q.F.Y., X.Y., B.S. and H.W. conducted soliton and Brillouin laser measurements. All authors analysed the data and contributed to writing the manuscript.

Corresponding author

Correspondence to Kerry Vahala.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file describes the intrinsic cavity Q measured from 1,520–1,560 nm, investigation of cavity loss mechanism, waveguide–resonator coupling, the high-temperature annealing effect on cavity Q, and mode filtering.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, K.Y., Oh, D.Y., Lee, S.H. et al. Bridging ultrahigh-Q devices and photonic circuits. Nature Photon 12, 297–302 (2018). https://doi.org/10.1038/s41566-018-0132-5

Download citation

Further reading