Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-harmonic spectroscopy of ultrafast many-body dynamics in strongly correlated systems

Abstract

We bring together two topics that, until now, have been the focus of intense but non-overlapping research efforts. The first concerns high-harmonic generation in solids, which occurs when an intense light field excites a highly non-equilibrium electronic response in a semiconductor or a dielectric. The second concerns many-body dynamics in strongly correlated systems such as the Mott insulator. We show that high-harmonic generation can be used to time-resolve ultrafast many-body dynamics associated with an optically driven phase transition, with accuracy far exceeding one cycle of the driving light field. Our work paves the way for time-resolving highly non-equilibrium many-body dynamics in strongly correlated systems, with few femtosecond accuracy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Time-resolved light-induced breakdown in the Mott insulator.
Fig. 2: High-harmonic spectroscopy of light-induced transition in a strongly correlated system.
Fig. 3: High-harmonic spectroscopy of light-induced transition in a strongly correlated system.
Fig. 4: High-harmonic spectroscopy of light-induced transition in a strongly correlated system for U/t0 = 5.

Similar content being viewed by others

References

  1. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  2. Baker, S. et al. Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424–427 (2006).

    Article  ADS  Google Scholar 

  3. Lein, M. Molecular imaging using recolliding electrons. J. Phys. B 40, R135–R173 (2007).

    Article  ADS  Google Scholar 

  4. Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009).

    Article  ADS  Google Scholar 

  5. Haessler, S. et al. Attosecond imaging of molecular electronic wavepackets. Nat. Phys. 6, 200–206 (2010).

    Article  Google Scholar 

  6. Shafir, D. et al. Resolving the time when an electron exits a tunnelling barrier. Nature 485, 343–346 (2012).

    Article  ADS  Google Scholar 

  7. Pedatzur, O. et al. Attosecond tunnelling interferometry. Nat. Phys. 11, 815–819 (2015).

    Article  Google Scholar 

  8. Bruner, B. D. et al. Multidimensional high harmonic spectroscopy of polyatomic molecules: detecting sub-cycle laser-driven hole dynamics upon ionization in strong mid-IR laser fields. Faraday Discuss. 194, 369–405 (2016).

    Article  ADS  Google Scholar 

  9. Kraus, P. M. et al. Measurement and laser control of attosecond charge migration in ionized iodoacetylene. Science 350, 790–795 (2015).

    Article  ADS  Google Scholar 

  10. Shiner, A. et al. Probing collective multi-electron dynamics in xenon with high-harmonic spectroscopy. Nat. Phys. 7, 464–467 (2011).

    Article  Google Scholar 

  11. Pabst, S. & Santra, R. Strong-field many-body physics and the giant enhancement in the high-harmonic spectrum of xenon. Phys. Rev. Lett. 111, 233005 (2013).

    Article  ADS  Google Scholar 

  12. Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011).

    Article  Google Scholar 

  13. Vampa, G. et al. Theoretical analysis of high-harmonic generation in solids. Phys. Rev. Lett. 113, 073901 (2014).

    Article  ADS  Google Scholar 

  14. Hohenleutner, M. et al. Real-time observation of interfering crystal electrons in high-harmonic generation. Nature 523, 572–575 (2015).

    Article  ADS  Google Scholar 

  15. Langer, F. et al. Lightwave-driven quasiparticle collisions on a subcycle timescale. Nature 533, 225–229 (2016).

    Article  ADS  Google Scholar 

  16. Luu, T. T. et al. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015).

    Article  ADS  Google Scholar 

  17. Schubert, O. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical bloch oscillations. Nat. Photon. 8, 119–123 (2014).

    Article  ADS  Google Scholar 

  18. Vampa, G. et al. All-optical reconstruction of crystal band structure. Phys. Rev. Lett. 115, 193603 (2015).

    Article  ADS  Google Scholar 

  19. Hawkins, P. G., Ivanov, M. Y. & Yakovlev, V. S. Effect of multiple conduction bands on high-harmonic emission from dielectrics. Phys. Rev. A. 91, 013405 (2015).

    Article  ADS  Google Scholar 

  20. You, Y. S., Reis, D. A. & Ghimire, S. Anisotropic high-harmonic generation in bulk crystals. Nat. Phys. 13, 345–349 (2017).

    Article  Google Scholar 

  21. Liu, H. et al. High-harmonic generation from an atomically thin semiconductor. Nat. Phys. 13, 262–265 (2017).

    Article  Google Scholar 

  22. Higuchi, T., Stockman, M. I. & Hommelhoff, P. Strong-field perspective on high-harmonic radiation from bulk solids. Phys. Rev. Lett. 113, 213901 (2014).

    Article  ADS  Google Scholar 

  23. Vampa, G. & Brabec, T. Merge of high harmonic generation from gases and solids and its implications for attosecond science. J. Phys. B 50, 083001 (2017).

    Article  ADS  Google Scholar 

  24. Tancogne-Dejean, N., Mücke, O. D., Kärtner, F. X. & Rubio, A. Impact of the electronic band structure in high-harmonic generation spectra of solids. Phys. Rev. Lett. 118, 087403 (2017).

    Article  ADS  Google Scholar 

  25. Kemper, A. F., Moritz, B., Freericks, J. K. & Devereaux, T. P. Theoretical description of high-order harmonic generation in solids. New. J. Phys. 15, 023003 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  26. Eisert, J., Friesdorf, M. & Gogolin, C. Quantum many-body systems out of equilibrium. Nat. Phys. 11, 124–130 (2015).

    Article  Google Scholar 

  27. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    Article  ADS  Google Scholar 

  28. Heyl, M., Polkovnikov, A. & Kehrein, S. Dynamical quantum phase transitions in the transverse-field Ising model. Phys. Rev. Lett. 110, 135704 (2013).

    Article  ADS  Google Scholar 

  29. Nasu, K. Photo-Induced Phase Transitions (World Scientific, Hackensack, NJ, USA, 2004).

  30. Oka, T. & Aoki, H. Photoinduced Tomonaga–Luttinger-like liquid in a Mott insulator. Phys. Rev. B 78, 241104 (2008).

    Article  ADS  Google Scholar 

  31. Liu, M. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012).

    Article  ADS  Google Scholar 

  32. Mayer, B. et al. Tunneling breakdown of a strongly correlated insulating state in VO2 induced by intense multiterahertz excitation. Phys. Rev. B 91, 235113 (2015).

    Article  ADS  Google Scholar 

  33. Gebhard, F. The Mott Metal–Insulator Transition: Models and Methods (Springer, Berlin, Germany, 1997).

  34. Oka, T. Nonlinear doublon production in a Mott insulator: Landau–Dykhne method applied to an integrable model. Phys. Rev. B 86, 075148 (2012).

    Article  ADS  Google Scholar 

  35. Essler, F. H. L, Frahm, H., Göhmann, F., Klümper, A. & Korepin, V. E. The One-Dimensional Hubbard Model (Cambridge Univ. Press, Cambridge, UK, 2010).

  36. Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys B 21, L31–L35 (1988).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge fruitful discussions with T. Oka, B. Amorim and P. Hawkins. M.I. and R.E.F.S. acknowledge support from EPSRC/DSTL MURI grant EP/N018680/1.

Author information

Authors and Affiliations

Authors

Contributions

R.E.F.S. developed the numerical code. M.I., R.E.F.S and O.S. developed the idea. All authors contributed to analysis of the results. M.I. and R.E.F.S. wrote the main part of the manuscript, which was discussed by all authors.

Corresponding authors

Correspondence to R. E. F. Silva or M. Ivanov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, R.E.F., Blinov, I.V., Rubtsov, A.N. et al. High-harmonic spectroscopy of ultrafast many-body dynamics in strongly correlated systems. Nature Photon 12, 266–270 (2018). https://doi.org/10.1038/s41566-018-0129-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-018-0129-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing