Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultimate waveform reproducibility of extreme-ultraviolet pulses by high-harmonic generation in quartz

Abstract

Optical waveforms of light reproducible with subcycle precision underlie applications of lasers in ultrafast spectroscopies, quantum control of matter and light-based signal processing. Nonlinear upconversion of optical pulses via high-harmonic generation in gas media extends these capabilities to the extreme ultraviolet (EUV). However, the waveform reproducibility of the generated EUV pulses in gases is inherently sensitive to intensity and phase fluctuations of the driving field. We used photoelectron interferometry to study the effects of intensity and carrier-envelope phase of an intense single-cycle optical pulse on the field waveform of EUV pulses generated in quartz nanofilms, and contrasted the results with those obtained in gas argon. The EUV waveforms generated in quartz were found to be virtually immune to the intensity and phase of the driving field, implying a non-recollisional character of the underlying emission mechanism. Waveform-sensitive photonic applications and precision measurements of fundamental processes in optics will benefit from these findings.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photoelectron interferometric tracing of the phase of EUV pulses.
Fig. 2: EUV waveform dependence on intensity of optical driver.
Fig. 3: CEP effects of driving field on EUV waveform.

Similar content being viewed by others

References

  1. Baltuska, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

    Article  ADS  Google Scholar 

  2. Hassan, M. T. et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature 530, 66–70 (2015).

    Article  ADS  Google Scholar 

  3. Schubert, O. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nat. Photon. 8, 119–123 (2014).

    Article  ADS  Google Scholar 

  4. Rybka, T. et al. Sub-cycle optical phase control of nanotunnelling in the single-electron regime. Nat. Photon. 10, 667–670 (2016).

    Article  ADS  Google Scholar 

  5. Wirth, A. et al. Synthesized light transients. Science 334, 195–200 (2011).

    Article  ADS  Google Scholar 

  6. Huang, S. W. et al. High-energy pulse synthesis with sub-cycle waveform control for strong-field physics. Nat. Photon. 5, 475–479 (2011).

    Article  ADS  Google Scholar 

  7. Sansone, G. et al. Electron localization following attosecond molecular photoionization. Nature 465, 763–766 (2010).

    Article  ADS  Google Scholar 

  8. Kling, M. F. et al. Control of electron localization in molecular dissociation. Science 312, 246–248 (2006).

    Article  ADS  Google Scholar 

  9. Huismans, Y. et al. Time-resolved holography with photoelectrons. Science 331, 61–64 (2011).

    Article  ADS  Google Scholar 

  10. Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013).

    Article  ADS  Google Scholar 

  11. Higuchi, T., Heide, C., Ullmann, K., Weber, H. B. & Hommelhoff, P. Light-field-driven currents in graphene. Nature 550, 224–228 (2017).

    Article  ADS  Google Scholar 

  12. Sivis, M. et al. Tailored semiconductors for high-harmonic optoelectronics. Science 357, 303–306 (2017).

    Article  ADS  Google Scholar 

  13. Goulielmakis, E. et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008).

    Article  ADS  Google Scholar 

  14. Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

    Article  ADS  Google Scholar 

  15. Li, J. et al. 53-attosecond X-ray pulses reach the carbon K-edge. Nat. Commun. 8, 186 (2017).

    Article  ADS  Google Scholar 

  16. Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007).

    Article  ADS  Google Scholar 

  17. Schultze, M. et al. Delay in photoemission. Science 328, 1658–1662 (2010).

    Article  ADS  Google Scholar 

  18. Guenot, D. et al. Measurements of relative photoemission time delays in noble gas atoms. J. Phys. B 47, 245602 (2014).

    Article  ADS  Google Scholar 

  19. Wang, H. et al. Practical issues of retrieving isolated attosecond pulses. J. Phys. B 42, 134007 (2009).

    Article  ADS  Google Scholar 

  20. Gagnon, J. & Yakovlev, V. S. The robustness of attosecond streaking measurements. Opt. Express 17, 17678–17693 (2009).

    Article  ADS  Google Scholar 

  21. Peng, L. Y. & Starace, A. F. Attosecond pulse carrier-envelope phase effects on ionized electron momentum and energy distributions. Phys. Rev. A 76, 043401 (2007).

    Article  ADS  Google Scholar 

  22. Lewenstein, M., Salières, P. & L’Huillier, A. Phase of the atomic polarization in high-order harmonic generation. Phys. Rev. A 52, 4747–4754 (1995).

    Article  ADS  Google Scholar 

  23. Yost, D. C. et al. Vacuum-ultraviolet frequency combs from below-threshold harmonics. Nat. Phys. 5, 815–820 (2009).

    Article  Google Scholar 

  24. Corsi, C., Pirri, A., Sali, E., Tortora, A. & Bellini, M. Direct interferometric measurement of the atomic dipole phase in high-order harmonic generation. Phys. Rev. Lett. 97, 023901 (2006).

    Article  ADS  Google Scholar 

  25. Sansone, G. et al. Measurement of harmonic phase differences by interference of attosecond light pulses. Phys. Rev. Lett. 94, 193903 (2005).

    Article  ADS  Google Scholar 

  26. Sansone, G. et al. Observation of carrier-envelope phase phenomena in the multi-optical-cycle regime. Phys. Rev. Lett. 92, 113904 (2004).

    Article  ADS  Google Scholar 

  27. Haworth, C. A. et al. Half-cycle cutoffs in harmonic spectra and robust carrier-envelope phase retrieval. Nat. Phys. 3, 52–57 (2007).

    Article  Google Scholar 

  28. Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011).

    Article  Google Scholar 

  29. Vampa, G. et al. Linking high harmonics from gases and solids. Nature 522, 462–464 (2015).

    Article  ADS  Google Scholar 

  30. Luu, T. T. et al. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015).

    Article  ADS  Google Scholar 

  31. Garg, M. et al. Multi-petahertz electronic metrology. Nature 538, 359–363 (2016).

    Article  ADS  Google Scholar 

  32. Langer, F. et al. Symmetry-controlled temporal structure of high-harmonic carrier fields from a bulk crystal. Nat. Photon. 11, 227–231 (2017).

    Article  ADS  Google Scholar 

  33. Hohenleutner, M. et al. Real-time observation of interfering crystal electrons in high-harmonic generation. Nature 523, 572–575 (2015).

    Article  ADS  Google Scholar 

  34. Higuchi, T., Stockman, M. I. & Hommelhoff, P. Strong-field perspective on high-harmonic radiation from bulk solids. Phys. Rev. Lett. 113, 213901 (2014).

    Article  ADS  Google Scholar 

  35. Vampa, G. et al. Theoretical analysis of high-harmonic generation in solids. Phys. Rev. Lett. 113, 073901 (2014).

    Article  ADS  Google Scholar 

  36. Golde, D., Meier, T. & Koch, S. W. High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter- and intraband excitations. Phys. Rev. B 77, 075330 (2008).

    Article  ADS  Google Scholar 

  37. Golde, D., Meier, T. & Koch, S. W. Microscopic analysis of extreme nonlinear optics in semiconductor nanostructures. J. Opt. Soc. Am. B 23, 2559–2565 (2006).

    Article  ADS  Google Scholar 

  38. You, Y. S. et al. Laser waveform control of extreme ultraviolet high harmonics from solids. Opt. Lett. 42, 1816–1819 (2017).

    Article  ADS  Google Scholar 

  39. Hammond, T. J. et al. Integrating solids and gases for attosecond pulse generation. Nat. Photon. 11, 594–599 (2017).

    Article  Google Scholar 

  40. You, Y. S. et al. High-harmonic generation in amorphous solids. Nat. Commun. 8, 724 (2017).

    Article  ADS  Google Scholar 

  41. Liu, C. D. et al. Carrier-envelope phase effects of a single attosecond pulse in two-color photoionization. Phys. Rev. Lett. 111, 123901 (2013).

    Article  ADS  Google Scholar 

  42. Goulielmakis, E. et al. Direct measurement of light waves. Science 305, 1267–1269 (2004).

    Article  ADS  Google Scholar 

  43. He, P. L., Ruiz, C. & He, F. Carrier-envelope-phase characterization for an isolated attosecond pulse by angular streaking. Phys. Rev. Lett. 116, 203601 (2016).

    Article  ADS  Google Scholar 

  44. Benko, C. et al. Extreme ultraviolet radiation with coherence time greater than 1 s. Nat. Photon. 8, 530–536 (2014).

    Article  ADS  Google Scholar 

  45. Lewenstein, M., Balcou, P., Ivanov, M. Y., L’Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    Article  ADS  Google Scholar 

  46. Corkum, P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  47. Schafer, K. J., Yang, B., Dimauro, L. F. & Kulander, K. C. Above threshold ionization beyond the high harmonic cutoff. Phys. Rev. Lett. 70, 1599–1602 (1993).

    Article  ADS  Google Scholar 

  48. Wu, M. X., Ghimire, S., Reis, D. A., Schafer, K. J. & Gaarde, M. B. High-harmonic generation from Bloch electrons in solids. Phys. Rev. A 91, 043839 (2015).

    Article  ADS  Google Scholar 

  49. Ott, C. et al. Strong-field spectral interferometry using the carrier-envelope phase. New J. Phys. 15, 073031 (2013).

    Article  ADS  Google Scholar 

  50. Fordell, T., Miranda, M., Arnold, C. L. & L’Huillier, A. High-speed carrier-envelope phase drift detection of amplified laser pulses. Opt. Express 19, 23652–23657 (2011).

    Article  ADS  Google Scholar 

  51. Kruger, M., Schenk, M. & Hommelhoff, P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature 475, 78–81 (2011).

    Article  Google Scholar 

  52. Herink, G., Solli, D. R., Gulde, M. & Ropers, C. Field-driven photoemission from nanostructures quenches the quiver motion. Nature 483, 190–193 (2012).

    Article  ADS  Google Scholar 

  53. Piglosiewicz, B. et al. Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nat. Photon. 8, 37–42 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank D. Bauer and C. Gohle for discussions. This work was supported by the Max Planck Society, a European Research Council grant (Attoelectronics-258501), the Deutsche Forschungsgemeinschaft, the Cluster of Excellence, Munich Centre for Advanced Photonics, and the European Research Training Network (MEDEA-641789).

Author information

Authors and Affiliations

Authors

Contributions

M.G. and H.Y.K. conducted the experiments; M.G. and E.G. conceived the experiments. E.G. planned the experiments and supervised the project; all authors interpreted data and contributed to the preparation of the manuscript.

Corresponding author

Correspondence to E. Goulielmakis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Photoelectron interferometry of ATI- and EUV-generated photoelectrons, semiclassical modelling of EUV emission in quartz and argon, and the direct link between the formed interference fringes and the phase of the EUV pulse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, M., Kim, H.Y. & Goulielmakis, E. Ultimate waveform reproducibility of extreme-ultraviolet pulses by high-harmonic generation in quartz. Nature Photon 12, 291–296 (2018). https://doi.org/10.1038/s41566-018-0123-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-018-0123-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing