Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-shot measurement of phase and amplitude by using a heterodyne time-lens system and ultrafast digital time-holography

Abstract

Temporal imaging systems are outstanding tools for single-shot observation of optical signals that have irregular and ultrafast dynamics. They allow long time windows to be recorded with femtosecond resolution, and do not rely on complex algorithms. However, simultaneous recording of amplitude and phase remains an open challenge for these systems. Here, we present a new heterodyne time-lens arrangement that efficiently records both the amplitude and phase of complex and random signals over large temporal windows (tens of picoseconds). Phase and time are encoded onto the two spatial dimensions of a camera. We implement this phase-sensitive time-lens system in two configurations: a time microscope and a digital temporal-holography device that enables single-shot measurement with a temporal resolution of ~80 fs. We demonstrate direct application of our heterodyne time-lens to turbulent-like optical fields and optical rogue waves generated from nonlinear propagation of partially coherent waves inside optical fibres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Heterodyne time-lens arrangement for amplitude and phase measurement of arbitrary signals.
Fig. 2: Phase, amplitude and spectrum of partially coherent waves (ASE).
Fig. 3: Nonlinear random waves.
Fig. 4: Nonlinear holography.
Fig. 5: Digital time-holography set-up (SEAHORSE) and test data.

Similar content being viewed by others

References

  1. Reid, D. T. et al. Roadmap on ultrafast optics. J. Opt. 18, 093006 (2016).

    Article  ADS  Google Scholar 

  2. Trebino, R. Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer Science and Business Media, New York, 2012).

  3. Broaddus, D. H., Foster, M. A., Kuzucu, O., Koch, K. W. & Gaeta, A. L. Ultrafast, single-shot phase and amplitude measurement via a temporal imaging approach. In Conference on Lasers and Electro-Optics CMK6 (Optical Society of America, 2010).

  4. Bowlan, P. et al. Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time. Opt. Express 14, 11892–11900 (2006).

    Article  ADS  Google Scholar 

  5. Alonso, B. et al. Spatiotemporal amplitude-and-phase reconstruction by Fourier-transform of interference spectra of high-complex-beams. J. Opt. Soc. Am. B. 27, 933–940 (2010).

    Article  ADS  Google Scholar 

  6. Mahjoubfar, A. et al. Time stretch and its applications. Nat. Photon. 11, 341–351 (2017).

    Article  ADS  Google Scholar 

  7. Rhodes, M., Steinmeyer, G. & Trebino, R. Standards for ultrashort-laser-pulse-measurement techniques and their consideration for self-referenced spectral interferometry. Appl. Opt. 53, D1–D11 (2014).

    Article  Google Scholar 

  8. Wetzel, B. et al. Real-time full bandwidth measurement of spectral noise in supercontinuum generation. Sci. Rep. 2, 882 (2012).

    Article  Google Scholar 

  9. Wong, T. C., Rhodes, M. & Trebino, R. Single-shot measurement of the complete temporal intensity and phase of supercontinuum. Optica 1, 119–124 (2014).

    Article  Google Scholar 

  10. Solli, D. R., Ropers, C., Koonath, P. & Jalali, B. Optical rogue waves. Nature 450, 1054–1057 (2007).

    Article  ADS  Google Scholar 

  11. Suret, P. et al. Single-shot observation of optical rogue waves in integrable turbulence using time microscopy. Nat. Commun. 7, 13136 (2016).

    Article  ADS  Google Scholar 

  12. Närhi, M. et al. Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability. Nat. Commun 7, 13675 (2016).

    Article  ADS  Google Scholar 

  13. Herink, G., Kurtz, F., Jalali, B., Solli, D. R. & Ropers, C. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science 356, 50–54 (2017).

    Article  ADS  Google Scholar 

  14. Ryczkowski, P. et al. Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser. Nat. Photon. https://doi.org/10.1038/s41566-018-0106-7 (2018).

  15. Picozzi, A. Towards a nonequilibrium thermodynamic description of incoherent nonlinear optics. Opt. Express 15, 9063–9083 (2007).

    Article  ADS  Google Scholar 

  16. Turitsyna, E. G. et al. The laminar-turbulent transition in a fibre laser. Nat. Photon. 7, 783–786 (2013).

    Article  ADS  Google Scholar 

  17. Kolner, B. H. & Nazarathy, M. Temporal imaging with a time lens. Opt. Lett. 14, 630–632 (1989).

    Article  ADS  Google Scholar 

  18. Foster, M. A. et al. Silicon-chip-based ultrafast optical oscilloscope. Nature 456, 81–84 (2008).

    Article  ADS  Google Scholar 

  19. Bennett, C. & Kolner, B. Upconversion time microscope demonstrating 103× magnification of femtosecond waveforms. Opt. Lett. 24, 783–785 (1999).

    Article  ADS  Google Scholar 

  20. Salem, R., Foster, M. A. & Gaeta, A. L. Application of space–time duality to ultrahigh-speed optical signal processing. Adv. Opt. Photon. 5, 274–317 (2013).

    Article  Google Scholar 

  21. Kauffman, M., Banyai, W., Godil, A. & Bloom, D. Time-to-frequency converter for measuring picosecond optical pulses. Appl. Phys. Lett. 64, 270–272 (1994).

    Article  ADS  Google Scholar 

  22. Dorrer, C. Single-shot measurement of the electric field of optical waveforms by use of time magnification and heterodyning. Opt. Lett. 31, 540–542 (2006).

    Article  ADS  Google Scholar 

  23. Dorrer, C. Electric field measurement of optical waveforms. US patent 7,411,683 (2008); https://www.google.com/patents/US7411683

  24. Kosik, E. M., Radunsky, A. S., Walmsley, I. A. & Dorrer, C. Interferometric technique for measuring broadband ultrashort pulses at the sampling limit. Opt. Lett. 30, 326–328 (2005).

    Article  ADS  Google Scholar 

  25. Wyatt, A. S., Walmsley, I. A., Stibenz, G. & Steinmeyer, G. Sub-10 fs pulse characterization using spatially encoded arrangement for spectral phase interferometry for direct electric field reconstruction. Opt. Lett. 31, 1914–1916 (2006).

    Article  ADS  Google Scholar 

  26. Kreis, T. Digital holographic interference-phase measurement using the Fourier-transform method. J. Opt. Soc. Am. A 3, 847–855 (1986).

    Article  ADS  Google Scholar 

  27. Walczak, P., Randoux, S. & Suret, P. Optical rogue waves in integrable turbulence. Phys. Rev. Lett. 114, 143903 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  28. Agafontsev, D. & Zakharov, V. E. Integrable turbulence and formation of rogue waves. Nonlinearity 28, 2791 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Soto-Crespo, J. M., Devine, N. & Akhmediev, N. Integrable turbulence and rogue waves: Breathers or solitons? Phys. Rev. Lett. 116, 103901 (2016).

    Article  ADS  Google Scholar 

  30. Randoux, S., Gustave, F., Suret, P. & El, G. Optical random riemann waves in integrable turbulence. Phys. Rev. Lett. 118, 233901 (2017).

    Article  ADS  Google Scholar 

  31. Zakharov, V. E. Turbulence in integrable systems. Stud. Appl. Math. 122, 219–234 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  32. Akhmediev, N., Ankiewicz, A. & Taki, M. Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009).

    Article  ADS  MATH  Google Scholar 

  33. Akhmediev, N., Soto-Crespo, J. SpringerAmpamp; Ankiewicz, A. Extreme waves that appear from nowhere: on the nature of rogue waves. Phys. Lett. A 373, 2137–2145 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Bertola, M. & Tovbis, A. Universality for the focusing nonlinear Schrödinger equation at the gradient catastrophe point: rational breathers and poles of the tritronquée solution to Painlevé i. Comm. Pure Appl. Math. 66, 678–752 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  35. Kibler, B. et al. The peregrine soliton in nonlinear fibre optics. Nat. Phys. 6, 790–795 (2010).

    Article  Google Scholar 

  36. Tsang, M., Psaltis, D. & Omenetto, F. G. Reverse propagation of femtosecond pulses in optical fibers. Opt. Lett. 28, 1873–1875 (2003).

    Article  ADS  Google Scholar 

  37. Barsi, C., Wan, W. & Fleischer, J. W. Imaging through nonlinear media using digital holography. Nat. Photon. 3, 211–215 (2009).

    Article  ADS  Google Scholar 

  38. Agrawal, G. P. Nonlinear Fiber Optics: Optics and Photonics 3rd edn (Academic Press, San Diego, 2001).

  39. Tikan, A. et al. Universality of the Peregrine soliton in the focusing dynamics of the cubic nonlinear Schrödinger equation. Phys. Rev. Lett. 119, 033901 (2017).

    Article  ADS  Google Scholar 

  40. Schnars, U. & Jüptner, W. Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer Science and Business Media, Berlin, 2005).

  41. Backus, S., Durfee, C. G. III, Murnane, M. M. & Kapteyn, H. C. High power ultrafast lasers. Rev. Sci. Instrum. 69, 1207–1223 (1998).

    Article  ADS  Google Scholar 

  42. Bennett, C. V. Parametric Temporal Imaging and Aberration Analysis. PhD thesis, Univ. California (2000).

  43. Bennett, C. V. & Kolner, B. H. Aberrations in temporal imaging. IEEE J. Quantum Electron. 37, 20–32 (2001).

    Article  ADS  Google Scholar 

  44. Dorrer, C. et al. Single-shot real-time characterization of chirped-pulse amplification systems by spectral phase interferometry for direct electric-field reconstruction. Opt. Lett. 24, 1644–1646 (1999).

    Article  ADS  Google Scholar 

  45. Hirasawa, M. et al. Sensitivity improvement of spectral phase interferometry for direct electric-field reconstruction for the characterization of low-intensity femtosecond pulses. Appl. Phys. B 74, s225–s229 (2002).

    Article  Google Scholar 

  46. Walmsley, I. A. & Dorrer, C. Characterization of ultrashort electromagnetic pulses. Adv. Opt. Photon. 1, 308–437 (2009).

    Article  Google Scholar 

  47. Dudley, J. M., Dias, F., Erkintalo, M. & Genty, G. Instabilities, breathers and rogue waves in optics. Nat. Photon. 8, 755–764 (2014).

    Article  ADS  Google Scholar 

  48. Toenger, S. et al. Emergent rogue wave structures and statistics in spontaneous modulation instability. Sci. Rep. 5, 10380 (2015).

    Article  ADS  Google Scholar 

  49. Mussot, A. et al. Observation of extreme temporal events in CW-pumped supercontinuum. Opt. Express 17, 17010–17015 (2009).

    Article  ADS  Google Scholar 

  50. Picozzi, A. et al. Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics. Phys. Rep. 542, 1–132 (2014).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Agence Nationale de la Recherche through the LABEX CEMPI project (ANR-11-LABX-0007) and by the Ministry of Higher Education and Research, Hauts-de-France Regional Council and European Regional Development Fund (ERDF) through the Contrat de Projets Etat-Région (CPER Photonics for Society P4S) and by the Centre National de la Recherche Scientifique (CNRS) through the project MICRO TURBU. The authors thank A. Mussot, the photonics group of the PhLAM and P. Szriftgiser for fruitful discussions and technical help. The authors also acknowledge MENLO for providing the femtosecond laser used for the time-holography measurements. The authors thank N. Savoia for the everyday work on the femto laser and R. El Koussaifi, C. Evain and M. Le Parquier for their crucial contribution in the development of the time lens.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design and the realization of the heterodyne time microscope and time-holography devices. All the authors participated in the data acquisition that has been essentially performed by A.T. All authors participated in data analysis, numerical simulations and have written the manuscript.

Corresponding author

Correspondence to Pierre Suret.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file includes a comparison between conventional time-lens and digital holography, and the comparison between numerical simulations, SEAHORSE and HTM.

Supplementary Video 1

This video shows experimental recordings of partially coherent light at fibre input and output of a 400-m-long polarization-maintaining fibre.

Supplementary Video 2

This video shows double pulse signal retrieval using the digital holography algorithm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikan, A., Bielawski, S., Szwaj, C. et al. Single-shot measurement of phase and amplitude by using a heterodyne time-lens system and ultrafast digital time-holography. Nature Photon 12, 228–234 (2018). https://doi.org/10.1038/s41566-018-0113-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-018-0113-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing