Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy

An Author Correction to this article was published on 05 June 2018

This article has been updated

Abstract

Super-resolution fluorescence microscopy provides unprecedented insight into cellular and subcellular structures. However, going ‘beyond the diffraction barrier’ comes at a price, since most far-field super-resolution imaging techniques trade temporal for spatial super-resolution. We propose the combination of a novel label-free white light quantitative phase imaging with fluorescence to provide high-speed imaging and spatial super-resolution. The non-iterative phase retrieval relies on the acquisition of single images at each z-location and thus enables straightforward 3D phase imaging using a classical microscope. We realized multi-plane imaging using a customized prism for the simultaneous acquisition of eight planes. This allowed us to not only image live cells in 3D at up to 200 Hz, but also to integrate fluorescence super-resolution optical fluctuation imaging within the same optical instrument. The 4D microscope platform unifies the sensitivity and high temporal resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Image formation in partial coherent imaging.
Fig. 2: White-light cross-spectral density algorithm for 3D phase imaging.
Fig. 3: Overview of the PRISM set-up.
Fig. 4: Fast live-cell 3D phase imaging of cellular dynamics.
Fig. 5: Multi-plane SOFI and phase imaging.

Change history

  • 05 June 2018

    In the version of this Article originally published, there were some errors in equations in Fig. 1a; the details are shown in the correction notice. In the Acknowledgments, grant number ‘686271’ should have read ‘686271/SEFRI 16.0047’. These errors have now been corrected online.

References

  1. 1.

    Rust, M. J., Bates, M. & Zhuang, X. W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–796 (2006).

    Article  Google Scholar 

  2. 2.

    Heilemann, M. et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. 47, 6172–6176 (2008).

    Article  Google Scholar 

  3. 3.

    Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    ADS  Article  Google Scholar 

  4. 4.

    Vandenberg, W., Leutenegger, M., Lasser, T., Hofkens, J. & Dedecker, P. Diffraction-unlimited imaging: from pretty pictures to hard numbers. Cell Tissue Res. 360, 151–178 (2015).

    Article  Google Scholar 

  5. 5.

    Tinnefeld, P., Eggeling, C. & Hell, S. W. Far-Field Optical Nanoscopy (Springer, 2015).

  6. 6.

    Small, A. R. & Parthasarathy, R. Superresolution localization methods. Annu. Rev. Phys. Chem. 65, 107–125 (2014).

    ADS  Article  Google Scholar 

  7. 7.

    Liu, Z., Lavis, L. D. & Betzig, E. Imaging live-cell dynamics and structure at the single-molecule level. Mol. Cell 58, 644–659 (2015).

    Article  Google Scholar 

  8. 8.

    Dertinger, T., Colyer, R., Iyer, G., Weiss, S. & Enderlein, J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl Acad. Sci. USA 106, 22287–22292 (2009).

    ADS  Article  Google Scholar 

  9. 9.

    Dertinger, T., Xu, J., Naini, O. F., Vogel, R. & Weiss, S. SOFI-based 3D superresolution sectioning with a widefield microscope. Opt. Nanoscopy 1, 2–5 (2012).

    Article  Google Scholar 

  10. 10.

    Geissbuehler, S. et al. Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging. Nat. Commun. 5, 5830 (2014).

    Article  Google Scholar 

  11. 11.

    Geissbuehler, S., Dellagiacoma, C. & Lasser, T. Comparison between SOFI and STORM. Biomed. Opt. Express 2, 408–420 (2011).

    Article  Google Scholar 

  12. 12.

    Girsault, A. et al. SOFI simulation tool: a software package for simulating and testing super-resolution optical fluctuation imaging. PLoS One 11, e0161602 (2016).

    Article  Google Scholar 

  13. 13.

    Geissbuehler, S. et al. Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI). Opt. Nanoscopy 1, 4 (2012).

    Article  Google Scholar 

  14. 14.

    Lukeš, T. et al. Quantifying protein densities on cell membranes using super-resolution optical fluctuation imaging. Nat. Commun. 8, 1731 (2017).

    ADS  Article  Google Scholar 

  15. 15.

    Liebling, M. Imaging the dynamics of biological processes via fast confocal microscopy and image processing. Cold Spring Harb. Protoc. 6, 783–789 (2011).

    Google Scholar 

  16. 16.

    Grewe, B. F., Langer, D., Kasper, H., Kampa, B. M. & Helmchen, F. High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nat. Methods 7, 399–405 (2010).

    Article  Google Scholar 

  17. 17.

    Chen, B.-C. et al. Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).

    Article  Google Scholar 

  18. 18.

    Wolf, E. Three-dimensional structure determination of semi-transparent objects from holographic data. Opt. Commun. 1, 153–156 (1969).

    ADS  Article  Google Scholar 

  19. 19.

    Mir, M., Bhaduri, B., Wang, R., Zhu, R. & Popescu, G. Quantitative phase imaging. Prog. Opt. 57, 133–217 (2012).

    Article  Google Scholar 

  20. 20.

    Gabor, D. A New microscopic principle. Nature 161, 777–778 (1948).

    ADS  Article  Google Scholar 

  21. 21.

    Goodman, J. W. & Lawrence, R. W. Digital image formation from electronically detected holograms. Appl. Phys. Lett. 11, 77–79 (1967).

    ADS  Article  Google Scholar 

  22. 22.

    Cuche, E., Bevilacqua, F. & Depeursinge, C. Digital holography for quantitative phase-contrast imaging. Opt. Lett. 24, 291–293 (1999).

    ADS  Article  Google Scholar 

  23. 23.

    Ikeda, T., Popescu, G., Dasari, R. R. & Feld, M. S. Hilbert phase microscopy for investigating fast dynamics in transparent systems. Opt. Lett. 30, 1165–1167 (2005).

    ADS  Article  Google Scholar 

  24. 24.

    Popescu, G. et al. Fourier phase microscopy for investigation of biological structures and dynamics. Opt. Lett. 29, 2503–2505 (2004).

    ADS  Article  Google Scholar 

  25. 25.

    Wang, Z. et al. Spatial light interference microscopy (SLIM). Opt. Express 19, 1016–1026 (2011).

    ADS  Article  Google Scholar 

  26. 26.

    Reed Teague, M. Deterministic phase retrieval: a Green’s function solution. J. Opt. Soc. Am. 73, 1434–1441 (1983).

    ADS  Article  Google Scholar 

  27. 27.

    Streibl, N. Phase imaging by the transport equation of intensity. Opt. Commun. 49, 6–10 (1984).

    ADS  Article  Google Scholar 

  28. 28.

    Kou, S. S., Waller, L., Barbastathis, G. & Sheppard, C. J. R. Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging. Opt. Lett. 35, 447–449 (2010).

    ADS  Article  Google Scholar 

  29. 29.

    Bostan, E., Froustey, E., Nilchian, M., Sage, D. & Unser, M. Variational phase imaging using the transport-of-intensity equation. IEEE Trans. Image Process. 25, 807–817 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  30. 30.

    Kim, T. et al. White-light diffraction tomography of unlabelled live cells. Nat. Photon. 8, 256–263 (2014).

    ADS  Article  Google Scholar 

  31. 31.

    Chen, M., Tian, L. & Waller, L. 3D differential phase contrast microscopy. Biomed. Opt. Express 7, 3940–3950 (2016).

    Article  Google Scholar 

  32. 32.

    Chowdhury, S., Eldridge, W. J., Wax, A. & Izatt, J. A. Structured illumination multimodal 3D-resolved quantitative phase and fluorescence sub-diffraction microscopy. Biomed. Opt. Express 8, 2496–2518 (2017).

    Article  Google Scholar 

  33. 33.

    Choi, W. et al. Tomographic phase microscopy. Nat. Methods 4, 717–719 (2007).

    Article  Google Scholar 

  34. 34.

    Born, M. & Wolf, E. Principles of Optics, 7th (expanded) ed. (Cambridge Univ. Press, Cambridge, UK, 1999).

  35. 35.

    Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, UK, 1995).

  36. 36.

    McCutchen, C. W. Generalized aperture and the three-dimensional diffraction image. J. Opt. Soc. Am. A 54, 240–244 (1964).

    ADS  Article  Google Scholar 

  37. 37.

    Sheppard, C. J. R., Gu, M., Kawata, Y. & Kawata, S. Three-dimensional transfer functions for high-aperture systems. J. Opt. Soc. Am. A 11, 593–598 (1994).

    ADS  Article  Google Scholar 

  38. 38.

    Edwards, C. et al. Effects of spatial coherence in diffraction phase microscopy. Opt. Express 22, 5133–5146 (2014).

    ADS  Article  Google Scholar 

  39. 39.

    Deschout, H. et al. Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions. Nat. Commun. 7, 13693 (2016).

    ADS  Article  Google Scholar 

  40. 40.

    Borm, B., Requardt, R. P., Herzog, V. & Kirfel, G. Membrane ruffles in cell migration: Indicators of inefficient lamellipodia adhesion and compartments of actin filament reorganization. Exp. Cell Res. 302, 83–95 (2005).

    Article  Google Scholar 

  41. 41.

    Lashuel, H. A., Overk, C. R., Oueslati, A. & Masliah, E. The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat. Rev. Neurosci. 14, 38–48 (2013).

    Article  Google Scholar 

  42. 42.

    Riedl, J. et al. Lifeact: a versatile marker to visualize F-actin. Nat. Methods 5, 605–607 (2008).

    Article  Google Scholar 

  43. 43.

    Brakemann, T. et al. A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching. Nat. Biotechnol. 29, 942–947 (2011).

    Article  Google Scholar 

  44. 44.

    Steiner, P. et al. Modulation of receptor cycling by neuron-enriched endosomal protein of 21 kD. J. Cell Biol. 157, 1197–1209 (2002).

    Article  Google Scholar 

  45. 45.

    Mahul-Mellier, A.-L. et al. Fibril growth and seeding capacity play key roles in α-synuclein-mediated apoptotic cell death. Cell Death Differ. 22, 1–16 (2015).

    Article  Google Scholar 

  46. 46.

    Volpicelli-Daley, L. A., Luk, K. C. & Lee, V. M.-Y. Addition of exogenous α-synuclein preformed fibrils to primary neuronal cultures to seed recruitment of endogenous α-synuclein to Lewy body and Lewy neurite-like aggregates. Nat. Protoc. 9, 2135–2146 (2014).

    Article  Google Scholar 

  47. 47.

    Volpicelli-Daley, L. A. et al. Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72, 57–71 (2011).

    Article  Google Scholar 

  48. 48.

    Aitken, C. E., Marshall, R. A. & Puglisi, J. D. An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys. J. 94, 1826–1835 (2008).

    Article  Google Scholar 

  49. 49.

    Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. Biophotonics International 11, 36–42 (2004).

    Google Scholar 

Download references

Acknowledgements

We thank P. Sandoz and G. van der Goot for construction of Lifeact-Dreiklang (VDG-EPFL), the LSBG-EPFL for providing RAW 264.7 cells and M. Ricchetti from Institute Pasteur for human fibroblast cells. We are grateful to M. Sison for cell culture advice and assistance. We thank O. Peric and G. Fantner (LBNI-EPFL) for providing the technical sample and performing the AFM measurement. We acknowledge A. Radenovic and A. Nahas for support and discussion and G. M. Hagen for proofreading of the manuscript. This project has been partly funded from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. [750528]. The research was supported by the Swiss National Science Foundation (SNSF) under grant 200020_159945/1. T.L. acknowledges the support from the Horizon 2020 Framework Programme of the European Union via grant 686271/SEFRI 16.0047.

Author information

Affiliations

Authors

Contributions

A.D. and K.S.G. contributed equally to this work. T.L. and A.D. initiated the project and wrote the theory/modelling. A.D. developed the phase retrieval algorithm and simulations. K.S.G., A.D., T.L. and A.S. designed the experiments. K.S.G. prepared and performed the experiments. A.-L. M.-M. prepared the neuron samples. A.D., K.S.G. and T.Lu. analysed the data. M.L., S.G. and T.L. designed the optical system including the image splitting prism. S.G. and A.S. built the microscope set-up. E.B., A.B. and H.A.L. provided research advice. A.D., K.S.G. and T.L. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to T. Lasser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

The theory of partially coherent image formation, the retrieval of the complex three-dimensional cross-spectral density, the experimental and simulated results of the point-spread function in amplitude and phase, quantitative phase calibration using technical samples, the PRISM multi-plane platform for three-dimensional phase and SOFI imaging and supplementary figures and methods.

Life Sciences Reporting Summary

Videos

Supplementary Video 1

This video shows a living human fibroblast at an imaging speed of 200 Hz as it migrates on a glass substrate.

Supplementary Video 2

This video shows long-term three-dimensional imaging of a dividing HeLa cell undergoing mitosis from the metaphase to the telophase.

Supplementary Video 3

This video shows the imaging of the vimentin network in HeLa cells and the cell dynamics by longer-term phase imaging

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Descloux, A., Grußmayer, K.S., Bostan, E. et al. Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy. Nature Photon 12, 165–172 (2018). https://doi.org/10.1038/s41566-018-0109-4

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing