Article | Published:

Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser

Nature Photonicsvolume 12pages221227 (2018) | Download Citation


Dissipative solitons are remarkably localized states of a physical system that arise from the dynamical balance between nonlinearity, dispersion and environmental energy exchange. They are the most universal form of soliton that can exist, and are seen in far-from-equilibrium systems in many fields, including chemistry, biology and physics. There has been particular interest in studying their properties in mode-locked lasers, but experiments have been limited by the inability to track the dynamical soliton evolution in real time. Here, we use simultaneous dispersive Fourier transform and time-lens measurements to completely characterize the spectral and temporal evolution of ultrashort dissipative solitons as their dynamics pass through a transient unstable regime with complex break-up and collisions before stabilization. Further insight is obtained from reconstruction of the soliton amplitude and phase and calculation of the corresponding complex-valued eigenvalue spectrum. These findings show how real-time measurements provide new insights into ultrafast transient dynamics in optics.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    French, P. M. W. The generation of ultrashort laser pulses. Rep. Prog. Phys. 58, 169–267 (1995).

  2. 2.

    Keller, U. Recent developments in compact ultrafast lasers. Nature 424, 831–838 (2003).

  3. 3.

    Hänsch, T. W. Nobel Lecture: Passion for precision. Rev. Mod. Phys. 78, 1297–1309 (2006).

  4. 4.

    Abraham, D., Nagar, R., Mikhelashvili, V. & Eisenstein, G. Transient dynamics in a self-starting passively mode-locked fiber-based soliton laser. Appl. Phys. Lett. 63, 2857–2859 (1993).

  5. 5.

    Dudley, J. M., Loh, C. M. & Harvey, J. D. Stable and unstable operation of a mode-locked argon laser. Quantum Semiclass. Opt. 8, 1029–1039 (1996).

  6. 6.

    Hönninger, C., Paschotta, R., Morier-Genoud, F., Moser, M. & Keller, U. Q-switching stability limits of continuous wave passive mode locking. J. Opt. Soc. Am. B 16, 46–56 (1999).

  7. 7.

    Akhmediev, N. & Ankiewicz, A. (eds) Dissipative Solitons, Lecture Notes in Physics, Vol. 661 (Springer-Verlag, Berlin, Germany, 2005).

  8. 8.

    Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photon. 6, 84–92 (2012).

  9. 9.

    Grelu, P. (ed.) Nonlinear Optical Cavity Dynamics: From Microresonators to Fiber Lasers (Wiley, Berlin, Germany, 2016).

  10. 10.

    Turitsyn, S. K. et al. Dissipative solitons in fiber lasers. Phys. Usp. 59, 642–668 (2016).

  11. 11.

    Flynn, M. B., O’Faolain, L. & Krauss, T. F. An experimental and numerical study of Q-switched mode-locking in monolithic semiconductor diode lasers. IEEE J. Quant. Electron. 40, 1008–1013 (2004).

  12. 12.

    Schlatter, A., Zeller, S. C., Grange, R., Paschotta, R. & Keller, U. Pulse-energy dynamics of passively mode-locked solid-state lasers above the Q-switching threshold. J. Opt. Soc. Am. B 21, 1469–1478 (2004).

  13. 13.

    Lecaplain, C., Grelu, P., Soto-Crespo, J. M. & Akhmediev, N. Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser. Phys. Rev. Lett. 108, 233901 (2012).

  14. 14.

    Goda, K. & Jalali, B. Dispersive Fourier transformation for fast continuous single-shot measurements. Nat. Photon. 7, 102–112 (2013).

  15. 15.

    Solli, D. R., Ropers, C., Koonath, P. & Jalali, B. Optical rogue waves. Nature 450, 1054–1057 (2007).

  16. 16.

    Godin, T. et al. Real time noise and wavelength correlations in octave-spanning supercontinuum generation. Opt. Express 21, 18452–18460 (2013).

  17. 17.

    Solli, D. R., Herink, G., Jalali, B. & Ropers, C. Fluctuations and correlations in modulation instability. Nat. Photon. 6, 463–468 (2012).

  18. 18.

    Wetzel, B. et al. Real-time full bandwidth measurement of spectral noise in supercontinuum generation. Sci. Rep. 2, 882 (2012).

  19. 19.

    Runge, A. F. J., Aguergaray, C., Broderick, N. G. R. & Erkintalo, M. Coherence and shot-to-shot spectral fluctuations in noise-like ultrafast fiber lasers. Opt. Lett. 38, 4327–4330 (2013).

  20. 20.

    Runge, A. F. J., Broderick, N. G. R. & Erkintalo, M. Observation of soliton explosions in a passively mode-locked fiber laser. Optica 2, 36–39 (2015).

  21. 21.

    Herink, G., Jalali, B., Ropers, C. & Solli, D. R. Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate. Nat. Photon. 10, 321–326 (2016).

  22. 22.

    Herink, G., Kurtz, F., Jalali, B., Solli, D. R. & Ropers, C. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science 356, 50–54 (2017).

  23. 23.

    Kolner, B. H. & Nazarathy, M. Temporal imaging with a time lens. Opt. Lett. 14, 630–632 (1989).

  24. 24.

    Suret, P. et al. Single-shot observation of optical rogue waves in integrable turbulence using time microscopy. Nat. Commun. 7, 13136 (2016).

  25. 25.

    Närhi, M. et al. Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability. Nat. Commun. 7, 13675 (2016).

  26. 26.

    Billet, C., Dudley, J. M., Joly, N. & Knight, J. C. Intermediate asymptotic evolution and photonic bandgap fiber compression of optical similaritons around 1550 nm. Opt. Express 13, 3236–3241 (2005).

  27. 27.

    Soto-Crespo, J. M., Akhmediev, N. & Town, G. Continuous-wave versus pulse regime in a passively mode-locked laser with a fast saturable absorber. J. Opt. Soc. Am. B 19, 234–242 (2002).

  28. 28.

    Schreiber, T., Ortaç, B., Limpert, J. & Tünnermann, A. On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations. Opt. Express 15, 8252–8262 (2007).

  29. 29.

    Sarukura, N. & Ishida, Y. Pulse evolution dynamics of a femtosecond passively mode-locked Ti:sapphire laser. Opt. Lett. 17, 61–63 (1992).

  30. 30.

    Vodonos, B. et al. Experimental study of the stochastic nature of the pulsation self-starting process in passive mode locking. Opt. Lett. 30, 2787–2789 (2005).

  31. 31.

    Li, H., Ouzounov, D. G. & Wise, F. W. Starting dynamics of dissipative-soliton fiber laser. Opt. Lett. 35, 2403–2405 (2010).

  32. 32.

    Zinkiewicz, Ł., Ozimek, F. & Wasylczyk, P. Witnessing the pulse birth-transient dynamics in a passively mode-locked femtosecond laser. Laser Phys. Lett. 10, 125003 (2013).

  33. 33.

    Ghiu Lee, C., Kim, J., Kim, S. & Petropoulos, P. Transient response of a passively mode-locked Er-doped fiber ring laser. Opt. Commun. 356, 161–165 (2015).

  34. 34.

    Wang, Z. et al. Q-switched-like soliton bunches and noise-like pulses generation in a partially mode-locked fiber laser. Opt. Express 24, 14709–14716 (2016).

  35. 35.

    Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik 35, 237–246 (1972).

  36. 36.

    Trebino, R. Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Wiley, Berlin, Germany, 2000).

  37. 37.

    Grelu, P. & Soto-Crespo, J. M. in Dissipative Solitons: From Optics to Biology and Medicine, Lecture Notes in Physics, Vol. 751 (eds Akhmediev, N. & Ankiewicz, A.) 137–173 (Springer, Berlin, Heidelberg, 2008).

  38. 38.

    Krupa, K., Nithyanandan, K., Andral, U., Tchofo-Dinda, P. & Grelu, P. Real-time observation of internal motion within ultrafast dissipative optical soliton molecules. Phys. Rev. Lett. 118, 243901 (2017).

  39. 39.

    Tang, D. Y., Zhao, B., Zhao, L. M. & Tam, H. Y. Soliton interaction in a fiber ring laser. Phys. Rev. E 72, 16616 (2005).

  40. 40.

    Roy, V., Olivier, M. & Piché, M. Pulse interactions in the stretched-pulse fiber laser. Opt. Express 13, 9217–9223 (2005).

  41. 41.

    Akhmediev, N., Soto-Crespo, J. M., Grapinet, M. & Grelu, P. Dissipative soliton interactions inside a fiber laser cavity. Opt. Fib. Tech. 11, 209–228 (2005).

  42. 42.

    Akhmediev, N., Soto-Crespo, J. M. & Town, G. Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach. Phys. Rev. E 63, 56602 (2001).

  43. 43.

    Zakharov, V. E. & Shabat, A. B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62–69 (1972).

  44. 44.

    Akhmediev, N. & Ankiewicz, A. Solitons: Non-linear Pulses and Beams (Chapman and Hall, London, UK, 1997).

  45. 45.

    Osborne, A. R. Nonlinear Ocean Waves and the Inverse Scattering Transform (Elsevier, London, UK, 2010).

  46. 46.

    Agrawal, G. P. Nonlinear Fiber Optics (Elsevier, Oxford, UK, 2013).

  47. 47.

    Turitsyn, S. K. & Derevyanko, S. A. Soliton-based discriminator of noncoherent optical pulses. Phys. Rev. A 78, 063819 (2008).

  48. 48.

    Randoux, S., Suret, P. & El, G. Inverse scattering transform analysis of rogue waves using local periodization procedure. Sci. Rep. 6, 29238 (2016).

  49. 49.

    Turitsyn, S. K. et al. Nonlinear Fourier transform for optical data processing and transmission: advances and perspectives. Optica 4, 307–322 (2017).

  50. 50.

    Jang, J. K., Erkintalo, M., Murdoch, S. G. & Coen, S. Ultraweak long-range interactions of solitons observed over astronomical distances. Nat. Photon. 7, 657–663 (2013).

  51. 51.

    Iaconis, C. & Walmsley, I. A. Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses. Opt. Lett. 23, 792–794 (1998).

  52. 52.

    Tikan, A., Bielawski, S., Szwaj, C., Randoux, S. & Suret, P. Phase and amplitude single-shot measurement by using heterodyne time-lens and ultrafast digital time-holography. Nat. Photon. (2018).

  53. 53.

    Salem, R., Foster, M. A. & Gaeta, A. L. Application of space–time duality to ultrahigh-speed optical signal processing. Adv. Opt. Photon. 5, 274–317 (2013).

  54. 54.

    Sugavanam, S., Kamalian, M., Peng, J., Prilepsky, J. E. & Turitsyn, S. K. Experimentally characterized nonlinear fourier transform of a mode-locked fibre laser. In Conference on Lasers and Electro-Optics Europe and the European Quantum Electronics Conference EF-2.6 (Optical Society of America, 2017).

  55. 55.

    Narhi, M., Ryczkowski, P., Billet, C., Genty, G. & Dudley, J. M. Ultrafast simultaneous real time spectral and temporal measurements of fibre laser modelocking dynamics. In Conference on Lasers and Electro-Optics Europe and the European Quantum Electronics Conference EE-3.5 (Optical Society of America, 2017).

  56. 56.

    Reddy, K. V. et al. A turnkey 1.5 μm picosecond Er/Yb fiber laser. In Conference on Optical Fiber Communication (OFC), OSA Technical Digest Series PD17 (Optical Society of America, 1993).

  57. 57.

    Wahls, S. & Poor, H. V. Fast numerical nonlinear Fourier transforms. IEEE Trans. Inf. Theory 6, 6957–6974 (2015).

Download references


This work was supported by the Agence Nationale de la Recherche project LABEX ACTION ANR11-LABX-0001-01, the Region of Franche-Comté Project CORPS and the Academy of Finland (Grants 267576 and 298463). The authors also thank K. V. Reddy for providing technical details concerning the soliton operating regime of the Pritel laser used in these experiments.

Author information

Author notes

  1. These authors contributed equally: P. Ryczkowski, M. Närhi and C. Billet.


  1. Laboratory of Photonics, Tampere University of Technology, Tampere, Finland

    • P. Ryczkowski
    • , M. Närhi
    •  & G. Genty
  2. Institut FEMTO-ST, UMR 6174 CNRS-Université Bourgogne Franche-Comté, Besançon, France

    • C. Billet
    • , J.-M. Merolla
    •  & J. M. Dudley


  1. Search for P. Ryczkowski in:

  2. Search for M. Närhi in:

  3. Search for C. Billet in:

  4. Search for J.-M. Merolla in:

  5. Search for G. Genty in:

  6. Search for J. M. Dudley in:


All authors participated in all the experimental work and data analysis reported, and in the writing and review of the final manuscript. G.G. and J.M.D. planned the research project and provided overall supervision.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to J. M. Dudley.

Supplementary information

  1. Supplementary Information

    Phase retrieval algorithm and nonlinear Fourier transform of typical pulse shapes.

About this article

Publication history




Issue Date


Further reading