Next-generation organic photovoltaics based on non-fullerene acceptors

Abstract

Over the past three years, a particularly exciting and active area of research within the field of organic photovoltaics has been the use of non-fullerene acceptors (NFAs). Compared with fullerene acceptors, NFAs possess significant advantages including tunability of bandgaps, energy levels, planarity and crystallinity. To date, NFA solar cells have not only achieved impressive power conversion efficiencies of ~13–14%, but have also shown excellent stability compared with traditional fullerene acceptor solar cells. This Review highlights recent progress on single-junction and tandem NFA solar cells and research directions to achieve even higher efficiencies of 15–20% using NFA-based organic photovoltaics are also proposed.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Introduction to OPVs.
Fig. 2
Fig. 3: Single-junction solar cells with fullerene acceptors or NFAs.
Fig. 4: Tandem solar cells with fullerene acceptors or NFAs.
Fig. 5: 2D mapping graphs of the future efficiency of tandem NFA solar cells.

References

  1. 1.

    Li, G., Zhu, R. & Yang, Y. Polymer solar cells. Nat. Photon. 6, 153–161 (2012).

    ADS  Article  Google Scholar 

  2. 2.

    Graetzel, M., Janssen, R. A. J., Mitzi, D. B. & Sargent, E. H. Materials interface engineering for solution-processed photovoltaics. Nature 488, 304–312 (2012).

    ADS  Article  Google Scholar 

  3. 3.

    Heeger, A. J. 25th anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation. Adv. Mater. 26, 10–27 (2014).

    Article  Google Scholar 

  4. 4.

    Brabec, C. J., Heeney, M., McCulloch, I. & Nelson, J. Influence of blend microstructure on bulk heterojunction organic photovoltaic performance. Chem. Soc. Rev. 40, 1185–1199 (2011).

    Article  Google Scholar 

  5. 5.

    Janssen, R. A. J. & Nelson, J. Factors limiting device efficiency in organic photovoltaics. Adv. Mater. 25, 1847–1858 (2013).

    Article  Google Scholar 

  6. 6.

    Chamberlain, G. A. Organic solar cells: a review. Solar Cells 8, 47–83 (1983).

    ADS  Article  Google Scholar 

  7. 7.

    Tang, C. W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986).

    ADS  Article  Google Scholar 

  8. 8.

    Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells—enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995).

    ADS  Article  Google Scholar 

  9. 9.

    Halls, J. J. M. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).

    ADS  Article  Google Scholar 

  10. 10.

    Blom, P. W. M., Mihailetchi, V. D., Koster, L. J. A. & Markov, D. E. Device physics of polymer: fullerene bulk heterojunction solar cells. Adv. Mater. 19, 1551–1566 (2007).

    Article  Google Scholar 

  11. 11.

    Stoltzfus, D. M. et al. Charge generation pathways in organic solar cells: assessing the contribution from the electron acceptor. Chem. Rev. 116, 12920–12955 (2016).

    Article  Google Scholar 

  12. 12.

    Hawks, S. A. et al. Relating recombination, density of states, and device performance in an efficient polymer:fullerene organic solar cell blend. Adv. Energy Mater. 3, 1201–1209 (2013).

    Article  Google Scholar 

  13. 13.

    Dennler, G., Scharber, M. C. & Brabec, C. J. Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 21, 1323–1338 (2009).

    Article  Google Scholar 

  14. 14.

    Chen, Y., Wan, X. & Long, G. High performance photovoltaic applications using solution-processed small molecules. Acc. Chem. Res. 46, 2645–2655 (2013).

    Article  Google Scholar 

  15. 15.

    Yao, H. et al. Molecular design of benzodithiophene-based organic photovoltaic materials. Chem. Rev. 116, 7397–7457 (2016).

    Article  Google Scholar 

  16. 16.

    Chen, H.-Y. et al. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photon. 3, 649–653 (2009).

    ADS  Article  Google Scholar 

  17. 17.

    Liang, Y. et al. For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22, E135–E138 (2010).

    Article  Google Scholar 

  18. 18.

    Zhou, H. et al. Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency. Angew. Chem. Int. Ed. 50, 2995–2998 (2011).

    Article  Google Scholar 

  19. 19.

    Zhou, J. et al. Small molecules based on benzo[1,2-b:4,5-b’]dithiophene unit for high-performance solution processed organic solar cells. J. Am. Chem. Soc. 134, 16345–16351 (2012).

    Article  Google Scholar 

  20. 20.

    He, Y. J., Chen, H. Y., Hou, J. H. & Li, Y. F. Indene-C60 bisadduct: a new acceptor for high-performance polymer solar cells. J. Am. Chem. Soc. 132, 1377–1382 (2010).

  21. 21.

    Chen, W. & Zhang, Q. Recent progress in non-fullerene small molecule acceptors in organic solar cells (OSCs). J. Mater. Chem. C 5, 1275–1302 (2017).

    Article  Google Scholar 

  22. 22.

    Khlyabich, P. P., Burkhart, B. & Thompson, B. C. Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage. J. Am. Chem. Soc. 133, 14534–14537 (2011).

    Article  Google Scholar 

  23. 23.

    Yang, L., Zhou, H., Price, S. C. & You, W. Parallel-like bulk heterojunction polymer solar cells. J. Am. Chem. Soc. 134, 5432–5435 (2012).

    Article  Google Scholar 

  24. 24.

    Yang, Y. et al. High-performance multiple-donor bulk heterojunction solar cells. Nat. Photon. 9, 190–198 (2015).

    ADS  Article  Google Scholar 

  25. 25.

    Lu, L., Kelly, M. A., You, W. & Yu, L. Status and prospects for ternary organic photovoltaics. Nat. Photon. 9, 491–500 (2015).

    ADS  Article  Google Scholar 

  26. 26.

    Ma, W., Yang, C., Gong, X., Lee, K. & Heeger, A. J. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15, 1617–1622 (2005).

    Article  Google Scholar 

  27. 27.

    Li, G. et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, 864–868 (2005).

    ADS  Article  Google Scholar 

  28. 28.

    Peet, J. et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 6, 497–500 (2007).

    ADS  Article  Google Scholar 

  29. 29.

    Huang, F., Wu, H. B. & Cao, Y. Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices. Chem. Soc. Rev. 39, 2500–2521 (2010).

    Article  Google Scholar 

  30. 30.

    He, Z. et al. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photon. 6, 591–595 (2012).

    ADS  Article  Google Scholar 

  31. 31.

    Li, G., Chu, C. W., Shrotriya, V., Huang, J. & Yang, Y. Efficient inverted polymer solar cells. Appl. Phys. Lett. 88, 253503 (2006).

    ADS  Article  Google Scholar 

  32. 32.

    Wang, K., Liu, C., Meng, T., Yi, C. & Gong, X. Inverted organic photovoltaic cells. Chem. Soc. Rev. 45, 2937–2975 (2016).

    Article  Google Scholar 

  33. 33.

    Kim, J. Y. et al. Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007).

    ADS  Article  Google Scholar 

  34. 34.

    You, J. B., Dou, L. T., Hong, Z. R., Li, G. & Yang, Y. Recent trends in polymer tandem solar cells research. Prog. Polym. Sci. 38, 1909–1928 (2013).

    Article  Google Scholar 

  35. 35.

    Zhao, J. et al. Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 1, 15027 (2016).

    ADS  Article  Google Scholar 

  36. 36.

    Zhan, X. et al. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. J. Am. Chem. Soc. 129, 7246–7247 (2007).

    Article  Google Scholar 

  37. 37.

    Few, S., Frost, J. M., Kirkpatrick, J. & Nelson, J. Influence of chemical structure on the charge transfer state spectrum of a polymer:fullerene complex. J. Phys. Chem. C 118, 8253–8261 (2014).

    Article  Google Scholar 

  38. 38.

    Jorgensen, M. et al. Stability of polymer solar cells. Adv. Mater. 24, 580–612 (2012).

    Article  Google Scholar 

  39. 39.

    Cheng, P. & Zhan, X. Stability of organic solar cells: challenges and strategies. Chem. Soc. Rev. 45, 2544–2582 (2016).

    Article  Google Scholar 

  40. 40.

    Polman, A., Knight, M., Garnett, E. C., Ehrler, B. & Sinke, W. C. Photovoltaic materials: present efficiencies and future challenges. Science 352, aad4424 (2016).

    Article  Google Scholar 

  41. 41.

    Dang, M. T., Hirsch, L. & Wantz, G. P3HT:PCBM, best seller in polymer photovoltaic research. Adv. Mater. 23, 3597–3602 (2011).

    Article  Google Scholar 

  42. 42.

    Guo, X., Facchetti, A. & Marks, T. J. Imide- and amide-functionalized polymer semiconductors. Chem. Rev. 114, 8943–9021 (2014).

    Article  Google Scholar 

  43. 43.

    Jiang, W., Li, Y. & Wang, Z. Tailor-made rylene arrays for high performance n-channel semiconductors. Acc. Chem. Res. 47, 3135–3147 (2014).

    Article  Google Scholar 

  44. 44.

    Nielsen, C. B., Holliday, S., Chen, H.-Y., Cryer, S. J. & McCulloch, I. Non-fullerene electron acceptors for use in organic solar cells. Acc. Chem. Res. 48, 2803–2812 (2015).

    Article  Google Scholar 

  45. 45.

    Kang, H. et al. From fullerene–polymer to all-polymer solar cells: the importance of molecular packing, orientation, and morphology control. Acc. Chem. Res. 49, 2424–2434 (2016).

    Article  Google Scholar 

  46. 46.

    Diao, Y. et al. Flow-enhanced solution printing of all-polymer solar cells. Nat. Commun. 6, 7955 (2015).

    Article  Google Scholar 

  47. 47.

    Song, C. J., Wang, E. J., Dong, B. H. & Wang, S. M. Non-fullerene organic small molecule acceptor materials. Prog. Chem. 27, 1754–1763 (2015).

    Google Scholar 

  48. 48.

    Liu, Z., Wu, Y., Zhang, Q. & Gao, X. Non-fullerene small molecule acceptors based on perylene diimides. J. Mater. Chem. A 4, 17604–17622 (2016).

    Article  Google Scholar 

  49. 49.

    Fernandez-Lazaro, F., Zink-Lorre, N. & Sastre-Santos, A. Perylenediimides as non-fullerene acceptors in bulk-heterojunction solar cells (BHJSCs). J. Mater. Chem. A 4, 9336–9346 (2016).

    Article  Google Scholar 

  50. 50.

    Jin, R., Wang, F., Guan, R., Zheng, X. & Zhang, T. Design of perylene-diimides-based small-molecules semiconductors for organic solar cells. Mol. Phys. 115, 1591–1597 (2017).

    ADS  Article  Google Scholar 

  51. 51.

    Zhong, Y. et al. Efficient organic solar cells with helical perylene diimide electron acceptors. J. Am. Chem. Soc. 136, 15215–15221 (2014).

    Article  Google Scholar 

  52. 52.

    Chen, W. et al. A perylene diimide (PDI)-based small molecule with tetrahedral configuration as a non-fullerene acceptor for organic solar cells. J. Mater. Chem. C 3, 4698–4705 (2015).

    Article  Google Scholar 

  53. 53.

    Yan, H. et al. A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679–686 (2009).

    ADS  Article  Google Scholar 

  54. 54.

    Earmme, T., Hwang, Y.-J., Murari, N. M., Subramaniyan, S. & Jenekhe, S. A. All-polymer solar cells with 3.3% efficiency based on naphthalene diimide-selenophene copolymer acceptor. J. Am. Chem. Soc. 135, 14960–14963 (2013).

    Article  Google Scholar 

  55. 55.

    Jung, J. W. et al. Fluoro-substituted n-type conjugated polymers for additive-free all-polymer bulk heterojunction solar cells with high power conversion efficiency of 6.71%. Adv. Mater. 27, 3310–3317 (2015).

    Article  Google Scholar 

  56. 56.

    Mori, D., Benten, H., Ohkita, H., Ito, S. & Miyake, K. Polymer/polymer blend solar cells improved by using high-molecular-weight fluorene-based copolymer as electron acceptor. ACS Appl. Mater. Interfaces 4, (3325–3329 (2012).

    Google Scholar 

  57. 57.

    Bloking, J. T. et al. Solution-processed organic solar cells with power conversion efficiencies of 2.5% using benzothiadiazole/imide-based acceptors. Chem. Mater. 23, 5484–5490 (2011).

    Article  Google Scholar 

  58. 58.

    Cnops, K. et al. 8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer. Nat. Commun. 5, 3406 (2014).

    Article  Google Scholar 

  59. 59.

    Brunetti, F. G., Gong, X., Tong, M., Heeger, A. J. & Wudl, F. Strain and Hückel aromaticity: driving forces for a promising new generation of electron acceptors in organic electronics. Angew. Chem. Int. Ed. 49, 532–536 (2010).

    Article  Google Scholar 

  60. 60.

    Yan, Q., Zhou, Y., Zheng, Y.-Q., Pei, J. & Zhao, D. Toward rational design of organic electron acceptor for photovoltaics: a study based on perylenediimide derivatives. Chem. Sci. 4, 4389–4394 (2013).

    Article  Google Scholar 

  61. 61.

    Zhang, X. et al. A potential perylene diimide dimer-based acceptor material for highly efficient solution-processed non-fullerene organic solar cells with 4.03% efficiency. Adv. Mater. 25, 5791–5797 (2013).

    ADS  Article  Google Scholar 

  62. 62.

    Liu, Y. et al. A tetraphenylethylene core-based 3D structure small molecular acceptor enabling efficient non-fullerene organic solar cells. Adv. Mater. 27, 1015–1020 (2015).

    Article  Google Scholar 

  63. 63.

    Zhong, Y. et al. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells. Nat. Commun. 6, 8242 (2015).

    Article  Google Scholar 

  64. 64.

    Liu, J. et al. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 1, 16089 (2016).

    ADS  Article  Google Scholar 

  65. 65.

    Duan, Y. et al. Pronounced effects of a triazine core on photovoltaic performance–efficient organic solar cells enabled by a pdi trimer-based small molecular acceptor. Adv. Mater. 29, 1605115 (2017).

    Article  Google Scholar 

  66. 66.

    Sisto, T. J. et al. Long, atomically precise donor–acceptor cove-edge nanoribbons as electron acceptors. J. Am. Chem. Soc. 139, 5648–5651 (2017).

    Article  Google Scholar 

  67. 67.

    Li, Y. F. Molecular design of photovoltaic materials for polymer solar cells: Toward suitable electronic energy levels and broad absorption. Acc. Chem. Res. 45, 723–733 (2012).

    Article  Google Scholar 

  68. 68.

    Lin, Y. et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 27, 1170–1174 (2015).

    Article  Google Scholar 

  69. 69.

    Chen, C.-P., Chan, S.-H., Chao, T.-C., Ting, C. & Ko, B.-T. Low-bandgap poly(thiophene-phenylene-thiophene) derivatives with broaden absorption spectra for use in high-performance bulk-heterojunction polymer solar cells. J. Am. Chem. Soc. 130, 12828–12833 (2008).

    Article  Google Scholar 

  70. 70.

    Wong, K.-T. et al. Syntheses and structures of novel heteroarene-fused coplanar π-conjugated chromophores. Org. Lett. 8, 5033–5036 (2006).

    Article  Google Scholar 

  71. 71.

    Zhang, Y. et al. Indacenodithiophene and quinoxaline-based conjugated polymers for highly efficient polymer solar cells. Chem. Mater. 23, 2289–2291 (2011).

    Article  Google Scholar 

  72. 72.

    He, G. et al. Efficient small molecule bulk heterojunction solar cells with high fill factors via introduction of [small pi]-stacking moieties as end group. J. Mater. Chem. A 1, 1801–1809 (2013).

    Article  Google Scholar 

  73. 73.

    Bin, H. et al. 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat. Commun. 7, 13651 (2016).

    ADS  Article  Google Scholar 

  74. 74.

    Lin, Y. et al. High-performance electron acceptor with thienyl side chains for organic photovoltaics. J. Am. Chem. Soc. 138, 4955–4961 (2016).

    Article  Google Scholar 

  75. 75.

    Yang, Y. et al. Side-chain isomerization on n-type organic semiconductor ITIC acceptor make 11.77% high efficiency polymer solar cells. J. Am. Chem. Soc. 138, 15011–15018 (2016).

    Article  Google Scholar 

  76. 76.

    Li, Z. et al. Donor polymer design enables efficient non-fullerene organic solar cells. Nat. Commun. 7, 13094 (2016).

    ADS  Article  Google Scholar 

  77. 77.

    Yao, H. et al. Achieving highly efficient nonfullerene organic solar cells with improved intermolecular interaction and open-circuit voltage. Adv. Mater. 29, 1700254 (2017).

    Article  Google Scholar 

  78. 78.

    Lin, Y. et al. Mapping polymer donors toward high-efficiency fullerene free organic solar cells. Adv. Mater. 29, 1604155 (2017).

    Article  Google Scholar 

  79. 79.

    Holliday, S. et al. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat. Commun. 7, 11585 (2016).

    ADS  Article  Google Scholar 

  80. 80.

    Baran, D. et al. Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nat. Mater. 16, 363–369 (2017).

    ADS  Article  Google Scholar 

  81. 81.

    Guo, Y. et al. A Vinylene-bridged perylenediimide-based polymeric acceptor enabling efficient all-polymer solar cells processed under ambient conditions. Adv. Mater. 28, 8483–8489 (2016).

    Article  Google Scholar 

  82. 82.

    Wang, W. et al. Fused hexacyclic nonfullerene acceptor with strong near-infrared absorption for semitransparent organic solar cells with 9.77% efficiency. Adv. Mater. 29, 1701308 (2017).

    Article  Google Scholar 

  83. 83.

    Yao, H. et al. Design and synthesis of a low bandgap small molecule acceptor for efficient polymer solar cells. Adv. Mater. 28, 8283–8287 (2016).

    Article  Google Scholar 

  84. 84.

    Lin, Y. et al. High-performance fullerene-free polymer solar cells with 6.31% efficiency. Energy Environ. Sci. 8, 610–616 (2015).

    Article  Google Scholar 

  85. 85.

    Yao, H. et al. Design, synthesis, and photovoltaic characterization of a small molecular acceptor with an ultra-narrow band gap. Angew. Chem. Int. Ed. 56, 3045–3049 (2017).

    Article  Google Scholar 

  86. 86.

    Zhao, W. et al. Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 139, 7148–7151 (2017).

    Article  Google Scholar 

  87. 87.

    Gao, L. et al. All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Adv. Mater. 28, 1884–1890 (2016).

    Article  Google Scholar 

  88. 88.

    Melzer, C., Koop, E. J., Mihailetchi, V. D. & Blom, P. W. M. Hole transport in poly(phenylene vinylene)/methanofullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 14, 865–870 (2004).

    Article  Google Scholar 

  89. 89.

    Wu, Q., Zhao, D., Schneider, A. M., Chen, W. & Yu, L. Covalently bound clusters of alpha-substituted pdi—rival electron acceptors to fullerene for organic solar cells. J. Am. Chem. Soc. 138, 7248–7251 (2016).

    Article  Google Scholar 

  90. 90.

    Azzopardi, B. et al. Economic assessment of solar electricity production from organic-based photovoltaic modules in a domestic environment. Energy Environ. Sci. 4, 3741–3753 (2011).

    Article  Google Scholar 

  91. 91.

    Li, S. et al. A spirobifluorene and diketopyrrolopyrrole moieties based non-fullerene acceptor for efficient and thermally stable polymer solar cells with high open-circuit voltage. Energy Environ. Sci. 9, 604–610 (2016).

    Article  Google Scholar 

  92. 92.

    Holliday, S. et al. A rhodanine flanked nonfullerene acceptor for solution-processed organic photovoltaics. J. Am. Chem. Soc. 137, 898–904 (2015).

  93. 93.

    Savagatrup, S. et al. Mechanical degradation and stability of organic solar cells: molecular and microstructural determinants. Energy Environ. Sci. 8, 55–80 (2015).

    Article  Google Scholar 

  94. 94.

    Kim, T. et al. Flexible, highly efficient all-polymer solar cells. Nat. Commun. 6, 8547 (2015).

    Article  Google Scholar 

  95. 95.

    Brédas, J.-L., Beljonne, D., Coropceanu, V. & Cornil, J. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem. Rev. 104, 4971–5004 (2004).

  96. 96.

    Cheng, P. et al. Realizing small energy loss of 0.55 eV, high open-circuit voltage >1 V and high efficiency >10% in fullerene-free polymer solar cells via energy driver. Adv. Mater. 29, 1605216 (2017).

    Article  Google Scholar 

  97. 97.

    Yao, J. et al. Quantifying losses in open-circuit voltage in solution-processable solar cells. Phys. Rev. Appl. 4, 014020 (2015).

    ADS  Article  Google Scholar 

  98. 98.

    Tuladhar, S. M. et al. Low open-circuit voltage loss in solution-processed small-molecule organic solar cells. ACS Energy Lett. 1, 302–308 (2016).

    Article  Google Scholar 

  99. 99.

    Vandewal, K. et al. Quantification of quantum efficiency and energy losses in low bandgap polymer:fullerene solar cells with high open-circuit voltage. Adv. Funct. Mater. 22, 3480–3490 (2012).

    Article  Google Scholar 

  100. 100.

    Baran, D. et al. Reduced voltage losses yield 10% and >1V fullerene free organic solar cells. Energy Environ. Sci. 9, 3783–3793 (2016).

    Article  Google Scholar 

  101. 101.

    Chen, S. et al. A wide-bandgap donor polymer for highly efficient non-fullerene organic solar cells with a small voltage loss. J. Am. Chem. Soc. 139, 6298–6301 (2017).

    Article  Google Scholar 

  102. 102.

    Liu, D. et al. Molecular design of a wide-band-gap conjugated polymer for efficient fullerene-free polymer solar cells. Energy Environ. Sci. 10, 546–551 (2017).

    Article  Google Scholar 

  103. 103.

    Ameri, T., Dennler, G., Lungenschmied, C. & Brabec, C. J. Organic tandem solar cells: a review. Energy Environ. Sci. 2, 347–363 (2009).

    Article  Google Scholar 

  104. 104.

    Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p‐n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    ADS  Article  Google Scholar 

  105. 105.

    Green, M. A. et al. Solar cell efficiency tables (version 50). Prog. Photovoltaics 25, 668–676 (2017).

    Article  Google Scholar 

  106. 106.

    Yakimov, A. & Forrest, S. R. High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters. Appl. Phys. Lett. 80, 1667–1669 (2002).

    ADS  Article  Google Scholar 

  107. 107.

    Ameri, T., Li, N. & Brabec, C. J. Highly efficient organic tandem solar cells: follow up review. Energy Environ. Sci. 6, 2390–2413 (2013).

  108. 108.

    Hadipour, A. et al. Solution-processed organic tandem solar cells. Adv. Funct. Mater. 16, 1897–1903 (2006).

    Article  Google Scholar 

  109. 109.

    Dou, L. et al. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nat. Photon. 6, 180–185 (2012).

    ADS  Article  Google Scholar 

  110. 110.

    You, J. et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 4, 1446 (2013).

    ADS  Article  Google Scholar 

  111. 111.

    Andersen, T. R. et al. Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules. Energy Environ. Sci. 7, 2925–2933 (2014).

    Article  Google Scholar 

  112. 112.

    Spyropoulos, G. D. et al. Flexible organic tandem solar modules with 6% efficiency: combining roll-to-roll compatible processing with high geometric fill factors. Energy Environ. Sci. 7, 3284–3290 (2014).

    Article  Google Scholar 

  113. 113.

    Zuo, L. et al. Design of a versatile interconnecting layer for highly efficient series-connected polymer tandem solar cells. Energy Environ. Sci. 8, 1712–1718 (2015).

    Article  Google Scholar 

  114. 114.

    Zhang, K. et al. High-performance polymer tandem solar cells employing a new n-type conjugated polymer as an interconnecting layer. Adv. Mater. 28, 4817–4823 (2016).

    Article  Google Scholar 

  115. 115.

    Li, M. et al. Solution-processed organic tandem solar cells with power conversion efficiencies >12%. Nat. Photon. 11, 85–90 (2017).

    ADS  Article  Google Scholar 

  116. 116.

    You, J. et al. 10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells. Adv. Mater. 25, 3973–3978 (2013).

  117. 117.

    Zhou, H. et al. Polymer homo-tandem solar cells with best efficiency of 11.3%. Adv. Mater. 27, 1767–1773 (2015).

    Article  Google Scholar 

  118. 118.

    Li, W., Furlan, A., Hendriks, K. H., Wienk, M. M. & Janssen, R. A. J. Efficient tandem and triple-junction polymer solar cells. J. Am. Chem. Soc. 135, 5529–5532 (2013).

    Article  Google Scholar 

  119. 119.

    Chen, C.-C. et al. An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%. Adv. Mater. 26, 5670–5677 (2014).

    Article  Google Scholar 

  120. 120.

    Yusoff, A. R. b. M. et al. A high efficiency solution processed polymer inverted triple-junction solar cell exhibiting a power conversion efficiency of 11.83%. Energy Environ. Sci. 8, 303–316 (2015).

  121. 121.

    Liu, W. et al. Nonfullerene tandem organic solar cells with high open-circuit voltage of 1.97 V. Adv. Mater. 28, 9729–9734 (2016).

    ADS  Article  Google Scholar 

  122. 122.

    Qin, Y. et al. Achieving 12.8% efficiency by simultaneously improving open-circuit voltage and short-circuit current density in tandem organic solar cells. Adv. Mater. 29, 1606340 (2017).

    Article  Google Scholar 

  123. 123.

    Cui, Y. et al. Fine tuned photoactive and interconnection layers for achieving over 13% efficiency in a fullerene-free tandem organic solar cell. J. Am. Chem. Soc. 139, 7302–7309 (2017).

    Article  Google Scholar 

  124. 124.

    Yuan, J. et al. High efficiency all-polymer tandem solar cells. Sci. Rep. 6, 26459 (2016).

    ADS  Article  Google Scholar 

  125. 125.

    Chen, S. et al. An all-solution processed recombination layer with mild post-treatment enabling efficient homo-tandem non-fullerene organic solar cells. Adv. Mater. 29, 1604231 (2017).

    Article  Google Scholar 

  126. 126.

    Lu, L. et al. Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 115, 12666–12731 (2015).

    Article  Google Scholar 

  127. 127.

    Dennler, G. et al. Design rules for donors in bulk-heterojunction tandem solar cells—towards 15% energy-conversion efficiency. Adv. Mater. 20, 579–583 (2008).

    Article  Google Scholar 

  128. 128.

    Li, G., Chang, W.-H. & Yang, Y. Low-bandgap conjugated polymers enabling solution-processable tandem solar cells. Nat. Rev. Mater. 2, 17043 (2017).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

Y.Y. acknowledges the Air Force Office of Scientific Research (AFOSR) (FA2386-15-1-4108), Office of Naval Research (ONR) (N00014-14-1-0648), National Science Foundation (NSF) (ECCS-1509955) and UC-Solar Program (MRPI 328368) for financial support. X.Z. acknowledges the National Science Foundation China (NSFC) (51761165023, 21734001) for financial support. G.L. acknowledges the Project of Strategic Importance provided by The Hong Kong Polytechnic University (1-ZE29) for financial support. All authors acknowledge N. De Marco for help with English language editing.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Gang Li or Xiaowei Zhan or Yang Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Abbreviations, chemical structures and calculations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, P., Li, G., Zhan, X. et al. Next-generation organic photovoltaics based on non-fullerene acceptors. Nature Photon 12, 131–142 (2018). https://doi.org/10.1038/s41566-018-0104-9

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing