Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experimental statistical signature of many-body quantum interference

Abstract

Multi-particle interference is an essential ingredient for fundamental quantum mechanics phenomena and for quantum information processing to provide a computational advantage, as recently emphasized by boson sampling experiments. Hence, developing a reliable and efficient technique to witness its presence is pivotal in achieving the practical implementation of quantum technologies. Here, we experimentally identify genuine many-body quantum interference via a recent efficient protocol, which exploits statistical signatures at the output of a multimode quantum device. We successfully apply the test to validate three-photon experiments in an integrated photonic circuit, providing an extensive analysis on the resources required to perform it. Moreover, drawing upon established techniques of machine learning, we show how such tools help to identify the—a priori unknown—optimal features to witness these signatures. Our results provide evidence on the efficacy and feasibility of the method, paving the way for its adoption in large-scale implementations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Scheme of the apparatus.
Fig. 2: Experimental output data samples for indistinguishable particles.
Fig. 3: Assessment of multi-particle interference.
Fig. 4: Dependency of discrimination on output subsets and sample size.
Fig. 5: Importance of summary statistics for classification.

References

  1. 1.

    Dowling, J. P. & Milburn, G. J. Quantum technology: the second quantum revolution. Phil. Trans. R. Soc. Lond. A 361, 1655–1674 (2003).

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, UK, 2010).

  3. 3.

    Lo, H.-K., Curty, M. & Tamaki, K. Secure quantum key distribution. Nat. Photon. 8, 595–604 (2014).

    ADS  Article  Google Scholar 

  4. 4.

    Barz, S., Fitzsimons, J. F., Kashefi, E. & Walther, P. Experimental verification of quantum computation. Nat. Phys. 9, 727–731 (2013).

    Article  Google Scholar 

  5. 5.

    Kapourniotis, T., Dunjko, V. & Kashefi, E. On optimising quantum communication in verifiable quantum computing. Preprint at http://arxiv.org/abs/1506.06943 (2015).

  6. 6.

    Rønnow, T. F. et al. Defining and detecting quantum speedup. Science 345, 420–424 (2014).

    ADS  Article  Google Scholar 

  7. 7.

    Shin, S. W., Smith, G., Smolin, J. A. & Vazirani, U. How ‘quantum’ is the D-Wave machine? Preprint at http://arxiv.org/abs/1401.7087 (2014).

  8. 8.

    Gogolin, C., Kliesch, M., Aolita, L. & Eisert, J. Boson sampling in the light of sample complexity. Preprint at http://arxiv.org/abs/1306.3995 (2013).

  9. 9.

    Tichy, M. C., Tiersch, M., De Melo, F., Mintert, F. & Buchleitner, A. Zero-transmission law for multiport beam splitters. Phys. Rev. Lett. 104, 220405 (2010).

    ADS  Article  Google Scholar 

  10. 10.

    Tichy, M. C. Entanglement and interference of identical particles PhD thesis, Albert-Ludwigs-Universität Freiburg (2011).

  11. 11.

    Aaronson, S. & Arkhipov, A. The computational complexity of linear optics. Proc. 43rd ACM Symposium on Theory of Computing 333–342 (2011).

  12. 12.

    Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794–798 (2013).

    ADS  Article  Google Scholar 

  13. 13.

    Crespi, A. et al. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photon. 7, 545–549 (2013).

    ADS  Article  Google Scholar 

  14. 14.

    Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013).

    ADS  Article  Google Scholar 

  15. 15.

    Tillmann, M. et al. Experimental boson sampling. Nat. Photon. 7, 540–544 (2013).

    ADS  Article  Google Scholar 

  16. 16.

    Lund, A. P., Bremner, M. J. & Ralph, T. C. Quantum sampling problems, boson sampling and quantum supremacy. Quantum Inform. 3, 15 (2017).

    ADS  Article  Google Scholar 

  17. 17.

    Harrow, A. W. & Montanaro, A. Quantum computational supremacy. Nature 549, 203–209 (2017).

    ADS  Article  Google Scholar 

  18. 18.

    Aaronson, S. & Arkhipov, A. Boson sampling is far from uniform. Quantum Inform. Comput. 14, 1383–1423 (2014).

    Google Scholar 

  19. 19.

    Tichy, M. C., Mayer, K., Buchleitner, A. & Molmer, K. Stringent and efficient assessment of boson-sampling devices. Phys. Rev. Lett. 113, 020502 (2014).

    ADS  Article  Google Scholar 

  20. 20.

    Crespi, A. Suppression laws for multiparticle interference in Sylvester interferometers. Phys. Rev. A 91, 013811 (2015).

    ADS  Article  Google Scholar 

  21. 21.

    Aolita, L., Gogolin, C., Kliesch, M. & Eisert, J. Reliable quantum certification of photonic state preparations. Nat. Commun. 6, 8948 (2015).

    Article  Google Scholar 

  22. 22.

    Liu, K., Lund, A. P., Gu, Y. J. & Ralph, T. C. A certification scheme for the boson sampler. J. Opt. Soc. Am. B 33, 1835–1841 (2016).

    ADS  Article  Google Scholar 

  23. 23.

    Carolan, J. et al. On the experimental verification of quantum complexity in linear optics. Nat. Photon. 8, 621–626 (2014).

    ADS  Article  Google Scholar 

  24. 24.

    Spagnolo, N. et al. Experimental validation of photonic boson sampling. Nat. Photon. 8, 615–620 (2014).

    ADS  Article  Google Scholar 

  25. 25.

    Bentivegna, M. et al. Bayesian approach to boson sampling validation. Int. J. Quantum Inform. 12, 1560028 (2014).

    ADS  MathSciNet  Article  Google Scholar 

  26. 26.

    Bentivegna, M. et al. Experimental scattershot boson sampling. Sci. Adv. 1, e1400255 (2015).

  27. 27.

    Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Crespi, A. et al. Suppression law of quantum states in a 3D photonic fast Fourier transform chip. Nat. Commun. 7, 10469 (2016).

    ADS  Article  Google Scholar 

  29. 29.

    Wang, H. et al. High-efficiency multiphoton boson sampling. Nat. Photon. 11, 361–365 (2017).

    ADS  Article  Google Scholar 

  30. 30.

    Loredo, J. C. et al. Boson sampling with single-photon Fock states from a bright solid-state source. Phys. Rev. Lett. 118, 130503 (2017).

    ADS  Article  Google Scholar 

  31. 31.

    He, Y. et al. Time-bin-encoded boson sampling with a single-photon device. Phys. Rev. Lett. 118, 190501 (2017).

    ADS  Article  Google Scholar 

  32. 32.

    Neville, A. et al. Classical boson sampling algorithms with superior performance to near-term experiments. Nat. Phys. 13, 1153–1157 (2017).

    Article  Google Scholar 

  33. 33.

    Walschaers, M. et al. Statistical benchmark for boson sampling. New J. Phys. 18, 032001 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  34. 34.

    Walschaers, M. Efficient Quantum Transport PhD thesis, Albert-Ludwigs-Universität Freiburg (2016).

  35. 35.

    Bentivegna, M., Spagnolo, N. & Sciarrino, F. Is my boson sampler working? New J. Phys. 18, 041001 (2016).

    ADS  Article  Google Scholar 

  36. 36.

    Spagnolo, N. et al. Three-photon bosonic coalescence in an integrated tritter. Nat. Commun. 4, 1606 (2013).

    Article  Google Scholar 

  37. 37.

    Agne, S. et al. Observation of genuine three-photon interference. Phys. Rev. Lett. 118, 153602 (2017).

    ADS  Article  Google Scholar 

  38. 38.

    Menssen, A. J. et al. Distinguishability and many-particle interference. Phys. Rev. Lett. 118, 153603 (2017).

    ADS  Article  Google Scholar 

  39. 39.

    Spagnolo, N. et al. General rules for bosonic bunching in multimode interferometers. Phys. Rev. Lett. 111, 130503 (2013).

    ADS  Article  Google Scholar 

  40. 40.

    Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994).

    ADS  Article  Google Scholar 

  41. 41.

    Clements, W. R. et al. Optimal design for universal multiport interferometers. Optica 3, 1460–1465 (2016).

    Article  Google Scholar 

  42. 42.

    Shalev-Shwartz, S. & Ben-David, S. Understanding Machine Learning: From Theory to Algorithms (Cambridge Univ. Press, New York, USA, 2014).

  43. 43.

    Daryl, A. et al. Photon-number-resolving detection using time-multiplexing. J. Mod. Opt. 51, 1499–1515 (2004).

    Article  MATH  Google Scholar 

  44. 44.

    Ho, T. K. Random decision forests. Proc. 3rd International Conference on Document Analysis and Recognition 278–282 (1995).

Download references

Acknowledgements

This work was supported by European Research Council (ERC) Starting Grant 3DQUEST (3D-Quantum Integrated Optical Simulation, grant agreement no. 307783; http://www.3dquest.eu), and by H2020-FETPROACT-2014 Grant QUCHIP (Quantum Simulation on a Photonic Chip, grant agreement no. 641039; http://www.quchip.eu). A.B. acknowledges financial support through EU Collaborative project QuProCS (Quantum Probes for Complex Systems, grant agreement no. 641277). M.W. acknowledges financial support from European Union Grant QCUMbER (Quantum Controlled Ultrafast Multimode Entanglement and Measurement, grant agreement no. 665148; http://www.quantumlab.it).

Author information

Affiliations

Authors

Contributions

T.G., F.F., M.P., N.V., N.S. and F.S. devised and carried out the quantum experiment with single photons. A.C. and R.O. fabricated and characterized the integrated photonic circuit with classical light. T.G., F.F., M.P., N.S., M.W., A.B. and F.S. carried out analysis of the experimental data. F.F., M.P., T.G., N.S., N.W. and F.S. carried out the analysis with machine learning algorithms. All authors discussed the implementation, the experimental data and the results from the analysis with machine learning techniques. All authors contributed to writing the paper.

Corresponding author

Correspondence to Fabio Sciarrino.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–6; Supplementary Figures 1–7.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giordani, T., Flamini, F., Pompili, M. et al. Experimental statistical signature of many-body quantum interference. Nature Photon 12, 173–178 (2018). https://doi.org/10.1038/s41566-018-0097-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing