Article | Published:

Experimental statistical signature of many-body quantum interference

Abstract

Multi-particle interference is an essential ingredient for fundamental quantum mechanics phenomena and for quantum information processing to provide a computational advantage, as recently emphasized by boson sampling experiments. Hence, developing a reliable and efficient technique to witness its presence is pivotal in achieving the practical implementation of quantum technologies. Here, we experimentally identify genuine many-body quantum interference via a recent efficient protocol, which exploits statistical signatures at the output of a multimode quantum device. We successfully apply the test to validate three-photon experiments in an integrated photonic circuit, providing an extensive analysis on the resources required to perform it. Moreover, drawing upon established techniques of machine learning, we show how such tools help to identify the—a priori unknown—optimal features to witness these signatures. Our results provide evidence on the efficacy and feasibility of the method, paving the way for its adoption in large-scale implementations.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Dowling, J. P. & Milburn, G. J. Quantum technology: the second quantum revolution. Phil. Trans. R. Soc. Lond. A 361, 1655–1674 (2003).

  2. 2.

    Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, UK, 2010).

  3. 3.

    Lo, H.-K., Curty, M. & Tamaki, K. Secure quantum key distribution. Nat. Photon. 8, 595–604 (2014).

  4. 4.

    Barz, S., Fitzsimons, J. F., Kashefi, E. & Walther, P. Experimental verification of quantum computation. Nat. Phys. 9, 727–731 (2013).

  5. 5.

    Kapourniotis, T., Dunjko, V. & Kashefi, E. On optimising quantum communication in verifiable quantum computing. Preprint at http://arxiv.org/abs/1506.06943 (2015).

  6. 6.

    Rønnow, T. F. et al. Defining and detecting quantum speedup. Science 345, 420–424 (2014).

  7. 7.

    Shin, S. W., Smith, G., Smolin, J. A. & Vazirani, U. How ‘quantum’ is the D-Wave machine? Preprint at http://arxiv.org/abs/1401.7087 (2014).

  8. 8.

    Gogolin, C., Kliesch, M., Aolita, L. & Eisert, J. Boson sampling in the light of sample complexity. Preprint at http://arxiv.org/abs/1306.3995 (2013).

  9. 9.

    Tichy, M. C., Tiersch, M., De Melo, F., Mintert, F. & Buchleitner, A. Zero-transmission law for multiport beam splitters. Phys. Rev. Lett. 104, 220405 (2010).

  10. 10.

    Tichy, M. C. Entanglement and interference of identical particles PhD thesis, Albert-Ludwigs-Universität Freiburg (2011).

  11. 11.

    Aaronson, S. & Arkhipov, A. The computational complexity of linear optics. Proc. 43rd ACM Symposium on Theory of Computing 333–342 (2011).

  12. 12.

    Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794–798 (2013).

  13. 13.

    Crespi, A. et al. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photon. 7, 545–549 (2013).

  14. 14.

    Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013).

  15. 15.

    Tillmann, M. et al. Experimental boson sampling. Nat. Photon. 7, 540–544 (2013).

  16. 16.

    Lund, A. P., Bremner, M. J. & Ralph, T. C. Quantum sampling problems, boson sampling and quantum supremacy. Quantum Inform. 3, 15 (2017).

  17. 17.

    Harrow, A. W. & Montanaro, A. Quantum computational supremacy. Nature 549, 203–209 (2017).

  18. 18.

    Aaronson, S. & Arkhipov, A. Boson sampling is far from uniform. Quantum Inform. Comput. 14, 1383–1423 (2014).

  19. 19.

    Tichy, M. C., Mayer, K., Buchleitner, A. & Molmer, K. Stringent and efficient assessment of boson-sampling devices. Phys. Rev. Lett. 113, 020502 (2014).

  20. 20.

    Crespi, A. Suppression laws for multiparticle interference in Sylvester interferometers. Phys. Rev. A 91, 013811 (2015).

  21. 21.

    Aolita, L., Gogolin, C., Kliesch, M. & Eisert, J. Reliable quantum certification of photonic state preparations. Nat. Commun. 6, 8948 (2015).

  22. 22.

    Liu, K., Lund, A. P., Gu, Y. J. & Ralph, T. C. A certification scheme for the boson sampler. J. Opt. Soc. Am. B 33, 1835–1841 (2016).

  23. 23.

    Carolan, J. et al. On the experimental verification of quantum complexity in linear optics. Nat. Photon. 8, 621–626 (2014).

  24. 24.

    Spagnolo, N. et al. Experimental validation of photonic boson sampling. Nat. Photon. 8, 615–620 (2014).

  25. 25.

    Bentivegna, M. et al. Bayesian approach to boson sampling validation. Int. J. Quantum Inform. 12, 1560028 (2014).

  26. 26.

    Bentivegna, M. et al. Experimental scattershot boson sampling. Sci. Adv. 1, e1400255 (2015).

  27. 27.

    Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).

  28. 28.

    Crespi, A. et al. Suppression law of quantum states in a 3D photonic fast Fourier transform chip. Nat. Commun. 7, 10469 (2016).

  29. 29.

    Wang, H. et al. High-efficiency multiphoton boson sampling. Nat. Photon. 11, 361–365 (2017).

  30. 30.

    Loredo, J. C. et al. Boson sampling with single-photon Fock states from a bright solid-state source. Phys. Rev. Lett. 118, 130503 (2017).

  31. 31.

    He, Y. et al. Time-bin-encoded boson sampling with a single-photon device. Phys. Rev. Lett. 118, 190501 (2017).

  32. 32.

    Neville, A. et al. Classical boson sampling algorithms with superior performance to near-term experiments. Nat. Phys. 13, 1153–1157 (2017).

  33. 33.

    Walschaers, M. et al. Statistical benchmark for boson sampling. New J. Phys. 18, 032001 (2016).

  34. 34.

    Walschaers, M. Efficient Quantum Transport PhD thesis, Albert-Ludwigs-Universität Freiburg (2016).

  35. 35.

    Bentivegna, M., Spagnolo, N. & Sciarrino, F. Is my boson sampler working? New J. Phys. 18, 041001 (2016).

  36. 36.

    Spagnolo, N. et al. Three-photon bosonic coalescence in an integrated tritter. Nat. Commun. 4, 1606 (2013).

  37. 37.

    Agne, S. et al. Observation of genuine three-photon interference. Phys. Rev. Lett. 118, 153602 (2017).

  38. 38.

    Menssen, A. J. et al. Distinguishability and many-particle interference. Phys. Rev. Lett. 118, 153603 (2017).

  39. 39.

    Spagnolo, N. et al. General rules for bosonic bunching in multimode interferometers. Phys. Rev. Lett. 111, 130503 (2013).

  40. 40.

    Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994).

  41. 41.

    Clements, W. R. et al. Optimal design for universal multiport interferometers. Optica 3, 1460–1465 (2016).

  42. 42.

    Shalev-Shwartz, S. & Ben-David, S. Understanding Machine Learning: From Theory to Algorithms (Cambridge Univ. Press, New York, USA, 2014).

  43. 43.

    Daryl, A. et al. Photon-number-resolving detection using time-multiplexing. J. Mod. Opt. 51, 1499–1515 (2004).

  44. 44.

    Ho, T. K. Random decision forests. Proc. 3rd International Conference on Document Analysis and Recognition 278–282 (1995).

Download references

Acknowledgements

This work was supported by European Research Council (ERC) Starting Grant 3DQUEST (3D-Quantum Integrated Optical Simulation, grant agreement no. 307783; http://www.3dquest.eu), and by H2020-FETPROACT-2014 Grant QUCHIP (Quantum Simulation on a Photonic Chip, grant agreement no. 641039; http://www.quchip.eu). A.B. acknowledges financial support through EU Collaborative project QuProCS (Quantum Probes for Complex Systems, grant agreement no. 641277). M.W. acknowledges financial support from European Union Grant QCUMbER (Quantum Controlled Ultrafast Multimode Entanglement and Measurement, grant agreement no. 665148; http://www.quantumlab.it).

Author information

T.G., F.F., M.P., N.V., N.S. and F.S. devised and carried out the quantum experiment with single photons. A.C. and R.O. fabricated and characterized the integrated photonic circuit with classical light. T.G., F.F., M.P., N.S., M.W., A.B. and F.S. carried out analysis of the experimental data. F.F., M.P., T.G., N.S., N.W. and F.S. carried out the analysis with machine learning algorithms. All authors discussed the implementation, the experimental data and the results from the analysis with machine learning techniques. All authors contributed to writing the paper.

Competing interests

The authors declare no competing financial interests.

Correspondence to Fabio Sciarrino.

Supplementary information

  1. Supplementary Information

    Supplementary Notes 1–6; Supplementary Figures 1–7.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: Scheme of the apparatus.
Fig. 2: Experimental output data samples for indistinguishable particles.
Fig. 3: Assessment of multi-particle interference.
Fig. 4: Dependency of discrimination on output subsets and sample size.
Fig. 5: Importance of summary statistics for classification.