Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal

Abstract

The magneto-optical Kerr effect (MOKE) has been intensively studied in a variety of ferro- and ferrimagnetic materials as a powerful probe for electronic and magnetic properties1,2,3 and for magneto-optical technologies4. The MOKE can be additionally useful for the investigation of the antiferromagnetic (AF) state, although thus far limited to insulators5,6,7,8,9. Here, we report the first observation of the MOKE in an AF metal. In particular, we find that the non-collinear AF metal Mn3Sn (ref. 10) exhibits a large zero-field Kerr rotation angle of 20 mdeg at room temperature, comparable to ferromagnetic metals. Our first-principles calculations clarify that ferroic ordering of magnetic octupoles11 produces a large MOKE even in its fully compensated AF state. This large MOKE further allows imaging of the magnetic octupole domains and their reversal. The observation of a large MOKE in an AF metal will open new avenues for the study of domain dynamics as well as spintronics using antiferromagnets12,13,14,15,16.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Crystal and magnetic structures, anomalous Hall effect and weak ferromagnetism at 300 K of the non-collinear antiferromagnet Mn3Sn.
Fig. 2: Magneto-optical Kerr rotation in the non-collinear antiferromagnet Mn3Sn at 300 K.
Fig. 3: Magnetization dependence of the polar Kerr effect at room temperature for ferro- and ferrimagnets, and antiferromagnets including Mn3Sn.
Fig. 4: MOKE images in the non-collinear antiferromagnet Mn3Sn.

References

  1. 1.

    Oppeneer, P. M. in Handbook of Magnetic Materials Vol. 13 (ed. Buschow, K. H. J.) 229–422 (Elsevier, Amsterdam, 2001).

  2. 2.

    Zvezdin, A. K. & Kotov, V. A. Modern Magnetooptics and Magnetooptical Materials (Institute of Physics, Bristol, 1997).

    Google Scholar 

  3. 3.

    McCord, J. Progress in magnetic domain observation by advanced magneto-optical microscopy. J. Phys. D 48, 333001 (2015).

    Article  Google Scholar 

  4. 4.

    Mansuripur, M. The Physical Principles of Magneto-Optical Recording (Cambridge University, New York, 1995).

    Google Scholar 

  5. 5.

    Kahn, F. J., Pershan, P. S. & Remeika, J. P. Ultraviolet magneto-optical properties of single-crystal orthoferrites, garnets, and other ferric oxide compounds. Phys. Rev. 186, 891–918 (1969).

    Article  ADS  Google Scholar 

  6. 6.

    Smolenskiĭ, G. A., Pisarev, R. V. & Siniĭ, I. G. Birefringence of light in magnetically ordered crystals. Sov. Phys. Usp. 18, 410–429 (1975).

    Article  ADS  Google Scholar 

  7. 7.

    Zenkov, A. V. et al. Anisotropry of the Faraday effect in the weak ferromagnet YFeO3. Zh. Eksp. Teor. Fiz. 96, 1397–1405 (1989).

    Google Scholar 

  8. 8.

    Zubov, V. E., Krinchik, G. S., Seleznev, V. N. & Strugatskii, M. B. Surface magnetism of iron borate. Zh. Eksp. Teor. Fiz. 94, 290–300 (1988).

    Google Scholar 

  9. 9.

    Eremenko, V. V., Kharchenko, N. F., Litvinenko, Y. G. & Naumenko, V. M. Magneto-Optics and Spectroscopy of Antiferromagnets (Springer, New York, 1992).

    Google Scholar 

  10. 10.

    Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    Article  ADS  Google Scholar 

  11. 11.

    Suzuki, M.-T., Koretsune, T., Ochi, M. & Arita, R. Cluster multipole theory for anomalous Hall effect in antiferromagnets. Phys. Rev. B 95, 094406 (2017).

    Article  ADS  Google Scholar 

  12. 12.

    MacDonald, A. H. & Tsoi, M. Antiferromagnetic metal spintronics. Phil. Trans. R. Soc. A 369, 3098–3114 (2011).

    Article  ADS  Google Scholar 

  13. 13.

    Gomonay, E. V. & Loktev, V. M. Spintronics of antiferromagnetic systems. Low Temp. Phys. 40, 17–35 (2014).

    Article  ADS  Google Scholar 

  14. 14.

    Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotech. 5, 231–241 (2016).

    Article  ADS  Google Scholar 

  15. 15.

    Baltz, V. et al. Antiferromagnetism: the next flagship magnetic order for spintronics? Preprint at https://arxiv.org/abs/1606.04284v2 (2017).

  16. 16.

    Němec, P., Fiebig, M., Kampfrath, T. & Kimel, A. V. Antiferromagnetic opto-spintronics: part of a collection of reviews on antiferromagnetic spintronics. Preprint at https://arxiv.org/abs/1705.10600v2 (2017).

  17. 17.

    Argyres, P. N. Theory of the Faraday and Kerr effects in ferromagnetics. Phys. Rev. 97, 334–345 (1955).

    Article  ADS  Google Scholar 

  18. 18.

    Erskine, J. L. & Stern, E. A. Magneto-optic Kerr effect in Ni, Co, and Fe. Phys. Rev. Lett. 30, 1329–1332 (1973).

    Article  ADS  Google Scholar 

  19. 19.

    Kimel, A. V., Kirilyuk, A., Tsvetkov, A., Pisarev, R. V. & Rasing, T. Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3. Nature 429, 850–853 (2004).

    Article  ADS  Google Scholar 

  20. 20.

    Kimel, A. V. et al. Optical excitation of antiferromagnetic resonance in TmFeO3. Phys. Rev. B 74, 060403(R) (2006).

    Article  ADS  Google Scholar 

  21. 21.

    Kalashnikova, A. M. et al. Impulsive excitation of coherent magnons and phonons by subpicosecond laser pulses in the weak ferromagnet FeBO3. Phys. Rev. B 78, 104301 (2008).

    Article  ADS  Google Scholar 

  22. 22.

    Saidl, V. et al. Optical determination of the Néel vector in a CuMnAs thin-film antiferromagnet. Nat. Photon. 11, 91–96 (2017).

    Article  ADS  Google Scholar 

  23. 23.

    Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  ADS  Google Scholar 

  24. 24.

    Shindou, R. & Nagaosa, N. Orbital ferromagnetism and anomalous Hall effect in antiferromagnets on the distorted fcc lattice. Phys. Rev. Lett. 87, 116801 (2001).

    Article  ADS  Google Scholar 

  25. 25.

    Machida, Y., Nakatsuji, S., Onoda, S., Tayama, T. & Sakakibara, T. Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order. Nature 463, 210–213 (2010).

    Article  ADS  Google Scholar 

  26. 26.

    Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    Article  ADS  Google Scholar 

  27. 27.

    Feng, W., Guo, G.-Y., Zhou, J., Yao, Y. & Niu, Q. Large magneto-optical Kerr effect in noncollinear antiferromagnets Mn3X (X = Rh, Ir, Pt). Phys. Rev. B 92, 144426 (2015).

    Article  ADS  Google Scholar 

  28. 28.

    Krén, E., Paitz, J., Zimmer, G. & Zsoldos, É. Study of the magnetic phase transformation in the Mn3Sn phase. Physica B+C 80, 226–230 (1975).

    Article  ADS  Google Scholar 

  29. 29.

    Tomiyoshi, S. & Yamaguchi, Y. Magnetic structure and weak ferromagnetism of Mn3Sn studied by polarized neutron diffraction. J. Phys. Soc. Jpn. 51, 2478–2486 (1982).

    Article  ADS  Google Scholar 

  30. 30.

    Nagamiya, T., Tomiyoshi, S. & Yamaguchi, Y. Triangular spin configuration and weak ferromagnetism of Mn3Sn and Mn3Ge. Solid State Commun. 42, 385–388 (1982).

    Article  ADS  Google Scholar 

  31. 31.

    Manyala, N. et al. Large anomalous Hall effect in a silicon-based magnetic semiconductor. Nat. Mater. 3, 255–262 (2004).

    Article  ADS  Google Scholar 

  32. 32.

    Solovyev, I. V. Magneto-optical effect in the weak ferromagnets LaMO3 (M= Cr, Mn, and Fe). Phys. Rev. B 55, 8060–8063 (1997).

    Article  ADS  Google Scholar 

  33. 33.

    Liu, J. & Balents, L. Anomalous Hall effect and topological defects in antiferromagnetic Weyl semimetals: Mn3Sn/Ge. Phys. Rev. Lett. 119, 087202 (2017).

    Article  ADS  Google Scholar 

  34. 34.

    Yang, H. et al. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J. Phys. 19, 015008 (2017).

    Article  ADS  Google Scholar 

  35. 35.

    Kargarian, M., Randeria, M. & Trivedi, N. Theory of Kerr and Faraday rotations and linear dichroism in topological Weyl semimetals. Sci. Rep. 5, 12683 (2015).

    Article  ADS  Google Scholar 

  36. 36.

    Badoz, J., Billardon, M., Canit, J. C. & Russel, M. F. Sensitive devices to determine the state and degree of polarization of a light beam using a birefringence modulator. J. Opt. 8, 373 (1977).

    Article  ADS  Google Scholar 

  37. 37.

    Patankar, S. et al. Resonant magneto-optic Kerr effect in the magnetic topological insulator Cr: (Sb x , Bi1−x)2Te3. Phys. Rev. B 92, 214440 (2015).

    Article  ADS  Google Scholar 

  38. 38.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

  39. 39.

    Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  40. 40.

    Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    Article  ADS  Google Scholar 

  41. 41.

    Mostofi, A. A. et al. Wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).

    Article  MATH  ADS  Google Scholar 

  42. 42.

    Zhu, L. J., Pan, D., Nie, S. H., Lu, J. & Zhao, J. H. Tailoring magnetism of multifunctional Mn x Ga films with giant perpendicular anisotropy. Appl. Phys. Lett. 102, 132403 (2013).

    Article  ADS  Google Scholar 

  43. 43.

    Zhu, L. J., Brandt, L., Zhao, J. H. & Woltersdorf, G. Composition-tuned magneto-optical Kerr effect in L10-MnxGa films with giant perpendicular anisotropy. J. Phys. D 49, 245001 (2016).

    Article  ADS  Google Scholar 

  44. 44.

    Krishnan, K. M. Ferromagnetic δ-Mn1−xGax thin films with perpendicular anisotropy. Appl. Phys. Lett. 61, 2365–2367 (1992).

    Article  ADS  Google Scholar 

  45. 45.

    Kato, T., Kikuzawa, H., Iwata, S., Tsunashima, S. & Uchiyama, S. Magneto-optical effect in MnPt3 alloy films. J. Magn. Magn. Mater. 140, 713–714 (1995).

    Article  ADS  Google Scholar 

  46. 46.

    Di, G.-Q., Oikawa, S., Iwata, S., Tsunashima, S. & Uchiyama, S. Kerr rotation of quenched high-temperature-phase MnBi Film. Jpn J. Appl. Phys. 33, L783 (1994).

    Article  Google Scholar 

  47. 47.

    Yamamoto, S. & Fujii, T. Magnetic and magneto-optical properties of Sn-substituted Mn2Sb films. IEEE Trans. J. Magn. Jpn 6, 862–868 (1991).

    Article  Google Scholar 

  48. 48.

    Buschow, K. H. J., van Engen, P. G. & Jongebreur, R. Magneto-optical properties of metallic ferromagnetic materials. J. Magn. Magn. Mater. 38, 1–22 (1983).

    Article  ADS  Google Scholar 

  49. 49.

    Ohyama, R., Koyanagi, T. & Matsubara, K. Magneto-optical Kerr effect of rf-sputtered PtMnSb thin films. J. Appl. Phys. 61, 2347–2352 (1987).

    Article  ADS  Google Scholar 

  50. 50.

    Mitani, S. et al. Perpendicular magnetic anisotropy and magneto-optical Kerr rotation in FePt(001) monoatomic multilayers. J. Magn. Magn. Mater. 148, 163–164 (1995).

    Article  ADS  Google Scholar 

  51. 51.

    Zhang, X., Schoenes, J. & Wachter, P. Kerr-effect and dielectric tensor elements of magnetite (Fe3O4) between 0.5 and 4.3 eV. Solid State Commun. 39, 189–192 (1981).

    Article  ADS  Google Scholar 

  52. 52.

    Gilleo, M. A. in Handbook of Ferromagnetic Materials Vol. 2 (ed. Wohlfarth, E. P.) 1–53 (North-Holland, Amsterdam, 1980).

  53. 53.

    Kahn, F. J., Pershan, P. S. & Remeika, J. P. Ultraviolet magneto-optical properties of single-crystal ferrimagnetic ferric oxide compounds. J. Appl. Phys. 40, 1508–1510 (1969).

    Article  ADS  Google Scholar 

  54. 54.

    Visnovsky, S. et al. Magnetooptical polar Kerr effect in ferrimagnetic garnets and spinels. IEEE. Trans. Magn. 17, 3205–3210 (1981).

    Article  ADS  Google Scholar 

  55. 55.

    Nielsen, J. W. Properties and preparation of magnetic materials for bubble domains. Met. Trans. 2, 625–633 (1971).

    Article  Google Scholar 

  56. 56.

    Treves, D. Studies on orthoferrites at the Weizmann institute of science. J. Appl. Phys. 36, 1033–1039 (1965).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Y. Otani, M. Kimata, L. Balents, H. Chen, H. Ishizuka, O. Tchernyshyov and C. Broholm for discussions. This work is partially supported by CREST(JPMJCR15Q5), Japan Science and Technology Agency, by Grants-in-Aids for Scientific Research on Innovative Areas (15H05882 and 15H05883) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and by Grants-in-Aid for Scientific Research (16H02209) and the Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers (no. R2604) from the Japanese Society for the Promotion of Science (JSPS). Kerr spectroscopy was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DEAC02-05CH11231 within the Spin Physics programme (KC2206). L.W. is supported by the Gordon and Betty Moore Foundation’s EPiQS Initiative through grant GBMF4537 to J.O. at UC Berkeley. Y.L. was supported in part by SHINES (grant SC0012670), an Energy Frontier Research Center of the US Department of Energy, and grant DE-SC0009390. This research is funded in part by a QuantEmX grant from ICAM and the Gordon and Betty Moore Foundation through grant GBMF5305. The work of T.H., H.M. and S.N. at IQM was partially supported by the US Department of Energy, office of Basic Energy Sciences, Division of Material Sciences and Engineering under grant DE-FG02-08ER46544. T.H., H.M. and S.N. greatly appreciate the hospitality of the Department of Physics and Astronomy of Johns Hopkins University, where part of this work was conducted. The use of the facilities of the Materials Design and Characterization Laboratory at the Institute for Solid State Physics, The University of Tokyo, is acknowledged.

Author information

Affiliations

Authors

Contributions

S.N. conceived the project. S.N., R.D.S., J.O. and C.L.C. planned the experiments. M.I. synthesized the single-crystalline samples. T.H., S.N. and M.I. performed magnetization and Hall effect measurements. T.H. and H.M. prepared the samples for magneto-optical experiments. O.M.J.v.E. and D.B.G. performed the MOKE loop experiment. L.W., D.R. and S.P. performed the MOKE spectroscopy experiment. T.H., H.M., D.B.G. and Y.P.K. performed the MOKE imaging experiment. Y.P.K. and Y.L. carried out the image processing. R.A. planned the theoretical calculations, and T.K., M.-T.S. and R.A. performed the first-principles calculations. T.H., D.B.G., L.W., O.M.J.v.E., C.L.C., R.A., R.D.S., J.O. and S.N. discussed the results, and T.H., D.B.G., L.W., T.K., R.A., J.O. and S.N. wrote the manuscript and prepared figures. All authors commented on the manuscript.

Corresponding author

Correspondence to Satoru Nakatsuji.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Higo, T., Man, H., Gopman, D.B. et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nature Photon 12, 73–78 (2018). https://doi.org/10.1038/s41566-017-0086-z

Download citation

Further reading