Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Far-field nanoscopy on a semiconductor quantum dot via a rapid-adiabatic-passage-based switch

Abstract

The diffraction limit prevents a conventional optical microscope from imaging at the nanoscale. However, nanoscale imaging of molecules is possible by exploiting an intensity-dependent molecular switch1,2,3. This switch is translated into a microscopy scheme, stimulated emission depletion microscopy4,5,6,7. Variants on this scheme exist3,8,9,10,11,12,13, yet all exploit an incoherent response to the lasers. We present a scheme that relies on a coherent response to a laser. Quantum control of a two-level system proceeds via rapid adiabatic passage, an ideal molecular switch. We implement this scheme on an ensemble of quantum dots. Each quantum dot results in a bright spot in the image with extent down to 30 nm (λ/31). There is no significant loss of intensity with respect to confocal microscopy, resulting in a factor of 10 improvement in emitter position determination. The experiments establish rapid adiabatic passage as a versatile tool in the super-resolution toolbox.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept of nanoscopic imaging of a quantum mechanical TLS.
Fig. 2: RAP on a single self-assembled QD.
Fig. 3: Imaging an ensemble of QDs with the RAP-based protocol.

References

  1. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    Article  ADS  Google Scholar 

  2. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  ADS  Google Scholar 

  3. Hell, S. W. Microscopy and its focal switch. Nat. Methods 6, 24–32 (2009).

    Article  Google Scholar 

  4. Klar, T. A., Jakobs, S., Dyba, M., Egner, A. & Hell, S. W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl Acad. Sci. USA 97, 8206–8210 (2000).

    Article  ADS  Google Scholar 

  5. Dyba, M. & Hell, S. W. Focal spots of size λ/23 open up far-field florescence microscopy at 33 nm axial resolution. Phys. Rev. Lett. 88, 163901 (2002).

    Article  ADS  Google Scholar 

  6. Westphal, V. & Hell, S. W. Nanoscale resolution in the focal plane of an optical microscope. Phys. Rev. Lett. 94, 143903 (2005).

    Article  ADS  Google Scholar 

  7. Willig, K. I., Harke, B., Medda, R. & Hell, S. W. STED microscopy with continuous wave beams. Nat. Methods 4, 915–918 (2007).

    Article  Google Scholar 

  8. Bretschneider, S., Eggeling, C. & Hell, S. W. Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Phys. Rev. Lett. 98, 218103 (2007).

    Article  ADS  Google Scholar 

  9. Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    Article  ADS  Google Scholar 

  10. Rittweger, E., Han, K. Y., Irvine, S. E., Eggeling, C. & Hell, S. W. STED microscopy reveals crystal colour centres with nanometric resolution. Nat. Photon. 3, 144–147 (2009).

    Article  ADS  Google Scholar 

  11. Maurer, P. C. et al. Far-field optical imaging and manipulation of individual spins with nanoscale resolution. Nat. Phys. 6, 912–918 (2010).

    Article  Google Scholar 

  12. Weisenburger, S. & Sandoghdar, V. Light microscopy: an ongoing contemporary revolution. Contemp. Phys. 56, 123–143 (2015).

    Article  ADS  Google Scholar 

  13. Balzarotti, F. et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355, 606–612 (2017).

    Article  ADS  Google Scholar 

  14. Kuhlmann, A. V. et al. Charge noise and spin noise in a semiconductor quantum device. Nat. Phys. 9, 570–575 (2013).

    Article  Google Scholar 

  15. Sipahigil, A. et al. Indistinguishable photons from separated silicon-vacancy centers in diamond. Phys. Rev. Lett. 113, 113602 (2014).

    Article  ADS  Google Scholar 

  16. Wrigge, G., Gerhardt, I., Hwang, J., Zumofen, G. & Sandoghdar, V. Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence. Nat. Phys. 4, 60–66 (2008).

    Article  Google Scholar 

  17. Hell, S. W. Toward fluorescence nanoscopy. Nat. Biotechnol. 21, 1347–1355 (2003).

    Article  Google Scholar 

  18. Gerhardt, I., Wrigge, G., Hwang, J., Zumofen, G. & Sandoghdar, V. Coherent nonlinear single-molecule microscopy. Phys. Rev. A. 82, 063823 (2010).

    Article  ADS  Google Scholar 

  19. Gräslund, A., Rigler, R. & Widengren, J. Single Molecule Spectroscopy in Chemistry, Physics and Biology (Series in Chemical Physics 96, Springer, 2010).

  20. Lüker, S. et al. Influence of acoustic phonons on the optical control of quantum dots driven by adiabatic rapid passage. Phys. Rev. B 85, 121302(R) (2012).

    Article  ADS  Google Scholar 

  21. Wei, Y.-J. et al. Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage. Nano Lett. 14, 6515–6519 (2014).

    Article  ADS  Google Scholar 

  22. Kaldewey, T. et al. Demonstrating the decoupling regime of the electron-phonon interaction in a quantum dot using chirped optical excitation. Phys. Rev. B 95, 241306(R) (2017).

    Article  ADS  Google Scholar 

  23. Muller, A. et al. Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity. Phys. Rev. Lett. 99, 187402 (2007).

    Article  ADS  Google Scholar 

  24. Nguyen, H. S. et al. Ultra-coherent single photon source. Appl. Phys. Lett. 99, 261904 (2011).

    Article  ADS  Google Scholar 

  25. Matthiesen, C., Vamivakas, A. N. & Atatüre, M. Subnatural linewidth single photons from a quantum dot. Phys. Rev. Lett. 108, 093602 (2012).

    Article  ADS  Google Scholar 

  26. Kuhlmann, A. V. et al. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode. Rev. Sci. Instrum. 84, 073905 (2013).

    Article  ADS  Google Scholar 

  27. Simon, C.-M. et al. Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses. Phys. Rev. Lett. 106, 166801 (2011).

    Article  ADS  Google Scholar 

  28. Wu, Y. et al. Population inversion in a single InGaAs quantum dot using the method of adiabatic rapid passage. Phys. Rev. Lett. 106, 067401 (2011).

    Article  ADS  Google Scholar 

  29. Harke, B. et al. Resolution scaling in STED microscopy. Opt. Express 16, 4154–4162 (2008).

    Article  ADS  Google Scholar 

  30. Shevchenko, S., Ashhab, S. & Nori, F. Landau–Zener–Stückelberg interferometry. Phys. Rep. 492, 1–30 (2010).

    Article  ADS  Google Scholar 

  31. Prechtel, J. H. et al. Decoupling a hole spin qubit from the nuclear spins. Nat. Mater. 15, 981–986 (2016).

    Article  ADS  Google Scholar 

  32. Tartakovskii, A. I. et al. Dynamics of coherent and incoherent spin polarizations in ensembles of quantum dots. Phys. Rev. Lett. 93, 057401 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from Initial Training Network S3NANO, the National Center of Competence in Research QSIT (Quantum Science and Technology) and Swiss National Science Foundation projects 206021_144979 and 200020_156637. S.R.V., A.L. and A.D.W. acknowledge support from BMBF (Bundesministerium für Bildung und Forschung) Q.com-H 16KIS0109.

Author information

Authors and Affiliations

Authors

Contributions

T.K. designed and carried out the experiments under the supervision of A.V.K., T.K. carried out the detailed data analysis, S.R.V., and A.L. and A.D.W. fabricated the device for the experiments (molecular beam epitaxy of the heterostructure; post-growth processing of the diode structure). T.K. and R.J.W. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Timo Kaldewey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text and figures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaldewey, T., Kuhlmann, A.V., Valentin, S.R. et al. Far-field nanoscopy on a semiconductor quantum dot via a rapid-adiabatic-passage-based switch. Nature Photon 12, 68–72 (2018). https://doi.org/10.1038/s41566-017-0079-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-017-0079-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing