Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Wavefront shaping with disorder-engineered metasurfaces

Abstract

Recently, wavefront shaping with disordered media has demonstrated optical manipulation capabilities beyond those of conventional optics, including extended volume, aberration-free focusing and subwavelength focusing. However, translating these capabilities to useful applications has remained challenging as the input–output characteristics of the disordered media (P variables) need to be exhaustively determined via O(P) measurements. Here, we propose a paradigm shift where the disorder is specifically designed so its exact input–output characteristics are known a priori and can be used with only a few alignment steps. We implement this concept with a disorder-engineered metasurface, which exhibits additional unique features for wavefront shaping such as a large optical memory effect range in combination with a wide angular scattering range, excellent stability, and a tailorable angular scattering profile. Using this designed metasurface with wavefront shaping, we demonstrate high numerical aperture (NA > 0.5) focusing and fluorescence imaging with an estimated ~2.2 × 108 addressable points in an ~8 mm field of view.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Wavefront shaping assisted by a disorder-engineered metasurface.
Fig. 2: Characterization of disorder-engineered metasurfaces.
Fig. 3: Experimental demonstration of diffraction-limited focusing over an extended volume.
Fig. 4: Demonstration of disordered metasurface assisted microscope for high-resolution wide-FOV fluorescence imaging of Giardia lamblia cysts.

Similar content being viewed by others

References

  1. Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photon. 6, 283–292 (2012).

    Article  ADS  Google Scholar 

  2. Tyson, R. K. in Principles of Adaptive Optics 4th edn (CRC Press, Boca Raton, 2010).

  3. Horstmeyer, R., Ruan, H. & Yang, C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photon. 9, 563–571 (2015).

    Article  ADS  Google Scholar 

  4. Vellekoop, I. M., Lagendijk, A. & Mosk, A. P. Exploiting disorder for perfect focusing. Nat. Photon. 4, 320–322 (2010).

    Article  Google Scholar 

  5. Vellekoop, I. M. & Aegerter, C. M. Scattered light fluorescence microscopy: imaging through turbid layers. Opt. Lett. 35, 1245–1247 (2010).

    Article  ADS  Google Scholar 

  6. Van Putten, E. G. et al. Scattering lens resolves sub-100 nm structures with visible light. Phys. Rev. Lett. 106, 193905 (2011).

    Article  ADS  Google Scholar 

  7. Park, J.-H. et al. Subwavelength light focusing using random nanoparticles. Nat. Photon. 7, 454–458 (2013).

    Article  ADS  Google Scholar 

  8. Ryu, J., Jang, M., Eom, T. J., Yang, C. & Chung, E. Optical phase conjugation assisted scattering lens: variable focusing and 3D patterning. Sci. Rep. 6, 23494 (2016).

    Article  ADS  Google Scholar 

  9. Boniface, A., Mounaix, M., Blochet, B., Piestun, R. & Gigan, S. Transmission-matrix-based point-spread-function engineering through a complex medium. Optica 4, 2–6 (2016).

    Google Scholar 

  10. Yu, H., Lee, K., Park, J. & Park, Y. Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields. Nat. Photon. 11, 186–192 (2017).

    Article  ADS  Google Scholar 

  11. Battista, D. Di et al. Tailored light sheets through opaque cylindrical lenses. Optica 3, 1237–1240 (2016).

    Article  Google Scholar 

  12. Choi, Y. et al. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium. Phys. Rev. Lett. 107, 23902 (2011).

    Article  ADS  Google Scholar 

  13. Popoff, S. M., Lerosey, G., Fink, M., Boccara, A. C. & Gigan, S. Controlling light through optical disordered media: Transmission matrix approach. New J. Phys. 13, 123021 (2011).

    Article  ADS  Google Scholar 

  14. Kim, M., Choi, W., Choi, Y., Yoon, C. & Choi, W. Transmission matrix of a scattering medium and its applications in biophotonics. Opt. Express 23, 12648–12668 (2015).

    Article  ADS  Google Scholar 

  15. Popoff, S. M. et al. Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

    Article  ADS  Google Scholar 

  16. Yilmaz, H. et al. Speckle correlation resolution enhancement of wide-field fluorescence imaging. Optica 2, 424–429 (2015).

    Article  Google Scholar 

  17. Mudry, E. et al. Structured illumination microscopy using unknown speckle patterns. Nat. Photon. 6, 312–315 (2012).

    Article  ADS  Google Scholar 

  18. Pors, A., Ding, F., Chen, Y., Radko, I. P. & Bozhevolnyi, S. I. Random-phase metasurfaces at optical wavelengths. Sci. Rep. 6, 28448 (2016).

    Article  ADS  Google Scholar 

  19. Redding, B., Liew, S. F., Sarma, R. & Cao, H. Compact spectrometer based on a disordered photonic chip. Nat. Photon. 7, 746–751 (2013).

    Article  ADS  Google Scholar 

  20. Sheinfux, H. H. et al. Observation of Anderson localization in disordered nanophotonic structures. Science 356, 953–956 (2017).

    Article  ADS  Google Scholar 

  21. Castro-Lopez, M. et al. Reciprocal space engineering with hyperuniform gold metasurfaces. APL Photon. 2, 61302 (2017).

    Article  Google Scholar 

  22. Lalanne, P., Hugonin, J. P. & Chavel, P. Optical properties of deep lamellar gratings: a coupled Bloch-mode insight. J. Light. Technol. 24, 2442–2449 (2006).

    Article  ADS  Google Scholar 

  23. Kamali, S. M., Arbabi, A., Arbabi, E., Horie, Y. & Faraon, A. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces. Nat. Commun. 7, 11618 (2016).

    Article  ADS  Google Scholar 

  24. Lohmann, A. W., Dorsch, R. G., Mendlovic, D., Ferreira, C. & Zalevsky, Z. Space–bandwidth product of optical signals and systems. J. Opt. Soc. Am. A 13, 470–473 (1996).

    Article  ADS  Google Scholar 

  25. Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

    Article  ADS  Google Scholar 

  26. Miller, D. A. B. Sorting out light. Science 347, 8–9 (2015).

    Article  Google Scholar 

  27. Choi, Y., Yoon, C., Kim, M., Choi, W. & Choi, W. Optical imaging with the use of a scattering lens. IEEE J. Sel. Top. Quantum Electron. 20, 61–73 (2014).

    Article  Google Scholar 

  28. Park, J., Park, J.-H., Yu, H. & Park, Y. Focusing through turbid media by polarization modulation. Opt. Lett. 40, 1667–1670 (2015).

    Article  ADS  Google Scholar 

  29. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article  ADS  Google Scholar 

  30. Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

    Article  ADS  Google Scholar 

  31. Arbabi, A., Horie, Y., Ball, A. J., Bagheri, M. & Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high contrast transmitarrays. Nat. Commun. 6, 7069 (2014).

    Article  Google Scholar 

  32. Backlund, M. P. et al. Removing orientation-induced localization biases in single-molecule microscopy using a broadband metasurface mask. Nat. Photon. 10, 459–462 (2016).

    Article  ADS  Google Scholar 

  33. Khorasaninejad, M. et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

    Article  ADS  Google Scholar 

  34. Genevet, P., Capasso, F., Aieta, F., Khorasaninejad, M. & Devlin, R. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4, 139–152 (2017).

    Article  Google Scholar 

  35. Veksler, D. et al. Multiple wavefront shaping by metasurface based on mixed random antenna groups. ACS Photon. 2, 661–667 (2015).

    Article  Google Scholar 

  36. Goetschy, A. & Stone, A. D. Filtering random matrices: The effect of incomplete channel control in multiple scattering. Phys. Rev. Lett. 111, 63901 (2013).

    Article  ADS  Google Scholar 

  37. Feng, S., Kane, C., Lee, P. A. & Stone, A. D. Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett. 61, 834–837 (1988).

    Article  ADS  Google Scholar 

  38. Schott, S., Bertolotti, J., Léger, J.-F., Bourdieu, L. & Gigan, S. Characterization of the angular memory effect of scattered light in biological tissues. Opt. Express 23, 13505–13516 (2015).

    Article  ADS  Google Scholar 

  39. Zheng, G., Horstmeyer, R. & Yang, C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photon. 7, 739–745 (2013).

    Article  ADS  Google Scholar 

  40. Nikolenko, V. SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators. Front. Neural Circuits 2, 1–14 (2008).

    Article  Google Scholar 

  41. Kim, C. K., Adhikari, A. & Deisseroth, K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci. 18, 222–235 (2017).

    Article  Google Scholar 

  42. Curtis, J. E., Koss, B. A. & Grier, D. G. Dynamic holographic optical tweezers. Opt. Commun. 217, 169–175 (2012).

    Google Scholar 

  43. Bruck, R. et al. All-optical spatial light modulator for reconfigurable silicon photonic circuits. Optica 3, 396–402 (2016).

    Article  Google Scholar 

  44. Pappu, R., Recht, B., Taylor, J. & Gershenfeld, N. Physical one-way functions. Science 297, 2026–2030 (2002).

    Article  ADS  Google Scholar 

  45. Arbabi, A. et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 7, 13682 (2016).

    Article  ADS  Google Scholar 

  46. Zhan, A. et al. Low-contrast dielectric metasurface optics. ACS Photon. 3, 209–214 (2016).

    Article  Google Scholar 

  47. Fattal, D., Li, J., Peng, Z., Fiorentino, M. & Beausoleil, R. G. Flat dielectric grating reflectors with focusing abilities. Nat. Photon. 4, 466–470 (2010).

    Article  ADS  Google Scholar 

  48. Vo, S. et al. Sub-wavelength grating lenses with a twist. IEEE Photon. Technol. Lett. 26, 1375–1378 (2014).

    Article  Google Scholar 

  49. Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y. & Faraon, A. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica 3, 628–633 (2016).

    Article  Google Scholar 

  50. Ho, J. S. et al. Planar immersion lens with metasurfaces. Phys. Rev. B 91, 125145 (2015).

    Article  ADS  Google Scholar 

  51. Ambrose, E. J. A surface contact microscope for the study of cell movements. Nature 178, 1194–1194 (1956).

    Article  ADS  Google Scholar 

  52. Bertolotti, J. et al. Non-invasive imaging through opaque scattering layers. Nature 491, 232–234 (2012).

    Article  ADS  Google Scholar 

  53. Katz, O., Heidmann, P., Fink, M. & Gigan, S. Non-invasive real-time imaging through scattering layers and around corners via speckle correlations. Nat. Photon. 8, 784–790 (2014).

    Article  ADS  Google Scholar 

  54. Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).

    Article  ADS  Google Scholar 

  55. Li, D. et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349, aab3500 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health BRAIN Initiative (U01NS090577), the National Institute of Allergy and Infectious Diseases (R01AI096226), and a GIST-Caltech Collaborative Research Proposal (CG2012). Y.H. was supported by a Japan Student Services Organization (JASSO) fellowship. Y.H. and A.A. were also supported by National Science Foundation Grant 1512266 and Samsung Electronics. A.S. was supported by JSPS Overseas Research Fellowships. J.B. was supported by the National Institute of Biomedical Imaging and Bioengineering (F31EB021153) under a Ruth L. Kirschstein National Research Service Award and by the Donna and Benjamin M. Rosen Bioengineering Center. S.M.K. was supported by the DOE ‘Light-Material Interactions in Energy Conversion’ Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award no. DE-SC0001293. The device nanofabrication was performed at the Kavli Nanoscience Institute at Caltech.

Author information

Authors and Affiliations

Authors

Contributions

M.J. and Y.H. conceived the initial idea. M.J., Y.H., A.S., J.B., Y.L., H.R. and C.Y. expanded and developed the concept. M.J., Y.H. and A.S. developed theoretical modelling, designed the experiments, and analysed the experimental data. M.J. and A.S. carried out the optical focusing experiments. Y.H. performed the full-wave simulation and the design on the metasurface. A.S. performed the fluorescence imaging experiment with the help of H.R. Y.H., S.M.K. and A.A. fabricated the metasurface phase mask. Y.L. performed the measurements on the optical memory effect, the angular scattering profiles, and the stability. All authors contributed to writing the manuscript. C.Y. and A.F. supervised the project.

Corresponding authors

Correspondence to Andrei Faraon or Changhuei Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes; Supplementary Figures 1–8; Supplementary References.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, M., Horie, Y., Shibukawa, A. et al. Wavefront shaping with disorder-engineered metasurfaces. Nature Photon 12, 84–90 (2018). https://doi.org/10.1038/s41566-017-0078-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-017-0078-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing