Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits

Abstract

Achieving non-reciprocal light propagation via stimuli that break time-reversal symmetry, without magneto-optics, remains a major challenge for integrated nanophotonic devices. Recently, optomechanical microsystems in which light and vibrational modes are coupled through ponderomotive forces have demonstrated strong non-reciprocal effects through a variety of techniques, but always using optical pumping. None of these approaches has demonstrated bandwidth exceeding that of the mechanical system, and all of them require optical power; these are both fundamental and practical issues. Here, we resolve both challenges by breaking time-reversal symmetry using a two-dimensional acoustic pump that simultaneously provides a non-zero overlap integral for light–sound interaction and also satisfies the necessary phase-matching. We use this technique to produce a non-reciprocal modulator (a frequency shifting isolator) by means of indirect interband scattering. We demonstrate mode conversion asymmetry up to 15 dB and efficiency as high as 17% over a bandwidth exceeding 1 GHz.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual schematic of acoustically pumped non-reciprocal nanophotonic modulator.
Fig. 2: Non-reciprocal nanophotonic modulator.
Fig. 3: Experimental set-up and characterization.
Fig. 4: Experimental demonstration of non-reciprocal optomechanical modulation.
Fig. 5: Modulation efficiency measured as a function of RF drive power.

Similar content being viewed by others

References

  1. Huang, D. et al. Dynamically reconfigurable integrated optical circulators. Optica 4, 23–30 (2017).

    Article  Google Scholar 

  2. Bi, L. et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photon-. 5, 758–762 (2011).

    Article  ADS  Google Scholar 

  3. Peng, B. et al. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014).

    Article  Google Scholar 

  4. Sayrin, C. et al. Nanophotonic optical isolator controlled by the internal state of cold atoms. Phys. Rev. A 5, 041036 (2015).

    Google Scholar 

  5. Scheucher, M., Hilico, A., Will, E., Volz, J. & Rauschenbeutel, A. Quantum optical circulator controlled by a single chirally coupled atom. Science 354, 1577 (2016).

    Article  ADS  Google Scholar 

  6. Kang, M. S., Butsch, A. & Russell, P. S. J. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nat. Photon-. 5, 549–553 (2011).

    Article  ADS  Google Scholar 

  7. Kim, J., Kim, S. & Bahl, G. Complete linear optical isolation at the microscale with ultralow loss. Sci. Rep. 7, 1647 (2017).

    Article  ADS  Google Scholar 

  8. Poulton, C. G. et al. Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides. Opt. Express 20, 21235–21246 (2012).

    Article  ADS  Google Scholar 

  9. Shen, Z. et al. Experimental realization of optomechanically induced non-reciprocity. Nat. Photon-. 10, 657–661 (2016).

    Article  ADS  Google Scholar 

  10. Fang, K. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017).

    Article  Google Scholar 

  11. Ruesink, F., Miri, M.-A., Alu, A. & Verhagen, E. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun. 7, 13662 (2016).

    Article  ADS  Google Scholar 

  12. Dong, C.-H. et al. Brillouin-scattering-induced transparency and non-reciprocal light storage. Nat. Commun. 6, 6193 (2015).

    Article  Google Scholar 

  13. Halperin, B. I. Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185–2190 (1982).

    Article  ADS  Google Scholar 

  14. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    Article  ADS  Google Scholar 

  15. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, M. J. Imaging topological edge states in silicon photonics. Nat. Photon-. 7, 1001–1005 (2013).

    Article  ADS  Google Scholar 

  16. Susstrunk, R. & Huber, S. D. Observation of phononic helical edge states in a mechanical topological insulator. Science 349, 47–50 (2015).

    Article  Google Scholar 

  17. Kim, S., Xu, X., Taylor, J. M. & Bahl, G. Dynamically induced robust phonon transport and chiral cooling in an optomechanical system. Nat. Commun. 8, 205 (2017).

    Article  ADS  Google Scholar 

  18. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Article  ADS  Google Scholar 

  19. Kim, J., Kuzyk, M. C., Han, K., Wang, H. & Bahl, G. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys. 11, 275–280 (2015).

    Article  Google Scholar 

  20. Kuhn, L., Heidrich, P. F. & Lean, E. G. Optical guided wave mode conversion by an acoustic surface wave. Appl. Phys. Lett. 19, 428–430 (1971).

    Article  ADS  Google Scholar 

  21. Hwang, I. K., Yun, S. H. & Kim, B. Y. All-fiber-optic nonreciprocal modulator. Opt. Lett. 22, 507–509 (1997).

    Article  ADS  Google Scholar 

  22. Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nat. Photon-. 3, 91–94 (2009).

    Article  ADS  Google Scholar 

  23. Lira, H., Yu, Z., Fan, S. & Lipson, M. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett. 109, 033901 (2012).

    Article  ADS  Google Scholar 

  24. Shin, H. et al. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Nat. Commun. 4, 1944 (2013).

    Google Scholar 

  25. Kittlaus, E. A., Otterstrom, N. T. & Rakich, P. T. On-chip inter-modal Brillouin scattering. Nat. Commun. 8, 15819 (2017).

    Article  ADS  Google Scholar 

  26. Dostart, N., Kim, S. & Bahl, G. Giant gain enhancement in surface-confined resonant stimulated Brillouin scattering. Laser Photon-. Rev. 9, 689–705 (2015).

    Article  Google Scholar 

  27. Agarwal, G. S. & Jha, S. S. Multimode phonon cooling via three-wave parametric interactions with optical fields. Phys. Rev. A 88, 013815 (2013).

    Article  ADS  Google Scholar 

  28. Xiong, C., Pernice, W. H. P. & Tang, H. X. Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing. Nano Lett. 12, 3562–3568 (2012).

    Article  ADS  Google Scholar 

  29. Xiong, C. et al. Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New J. Phys. 14, 095014 (2012).

    Article  ADS  Google Scholar 

  30. Tadesse, S. A. & Li, M. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies. Nat. Commun. 5, 5402 (2014).

    Article  ADS  Google Scholar 

  31. Li, H., Tadesse, S. A., Liu, Q. & Li, M. Nanophotonic cavity optomechanics with propagating acoustic waves at frequencies up to 12 GHz. Optica 2, 826–831 (2015).

    Article  Google Scholar 

  32. Piazza, G., Stephanou, P. J. & Pisano, A. P. Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators. J. Micro. Syst. 15, 1406–1418 (2006).

    Article  Google Scholar 

  33. Kang, M. S., Brenn, A. & St.J. Russell, P. All-optical control of gigahertz acoustic resonances by forward stimulated interpolarization scattering in a photonic crystal fiber. Phys. Rev. Lett. 105, 153901 (2010).

    Article  ADS  Google Scholar 

  34. Knappe, S. et al. A microfabricated atomic clock. Appl. Phys. Lett. 85, 1460–1462 (2004).

    Article  ADS  Google Scholar 

  35. Esnault, F.-X. et al. Cold-atom double-Λ coherent population trapping clock. Phys. Rev. A 88, 042120 (2013).

    Article  ADS  Google Scholar 

  36. Gustavson, T. L., Bouyer, P. & Kasevich, M. A. Precision rotation measurements with an atom interferometer gyroscope. Phys. Rev. Lett. 78, 2046–2049 (1997).

    Article  ADS  Google Scholar 

  37. Peters, A., Chung, K. Y. & Chu, S. High-precision gravity measurements using atom interferometry. Metrologia 38, 25 (2001).

    Article  ADS  Google Scholar 

  38. Blanshan, E., Rochester, S. M., Donley, E. A. & Kitching, J. Light shifts in a pulsed cold-atom coherent-population-trapping clock. Phys. Rev. A 91, 041401 (2015).

    Article  ADS  Google Scholar 

  39. Fan, L. et al. Integrated optomechanical single-photon frequency shifter. Nat. Photon-. 10, 766–770 (2016).

    Article  ADS  Google Scholar 

  40. Luo, L.-W. et al. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun. 5, 3069 (2014).

    Google Scholar 

Download references

Acknowledgements

This material is based on research sponsored by the US Air Force Research Laboratory (AFRL) under agreement no. FA9453-16-1-0025 and by the US Air Force Office of Scientific Research (Young Investigator grant FA9550-15-1-0234). The US Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of AFRL and the Defense Advanced Research Projects Agency (DARPA) or the US Government. D.B.S. would also like to acknowledge support from a US National Science Foundation Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

D.B.S. and G.B. conceived the idea and, with S.K., developed the theory. D.B.S. fabricated the device, conducted the experiment and analysed the data. All authors contributed to writing the paper. G.B. supervised all aspects of this project.

Corresponding author

Correspondence to Gaurav Bahl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary theory and results; Supplementary Table 1; Supplementary Figures 1–7; Supplementary references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohn, D.B., Kim, S. & Bahl, G. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits. Nature Photon 12, 91–97 (2018). https://doi.org/10.1038/s41566-017-0075-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-017-0075-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing