Tandem luminescent solar concentrators based on engineered quantum dots

Abstract

Luminescent solar concentrators (LSCs) can serve as large-area sunlight collectors for terrestrial and space-based photovoltaics. Due to their high emission efficiencies and readily tunable emission and absorption spectra, colloidal quantum dots have emerged as a new and promising type of LSC fluorophore. Spectral tunability of the quantum dots also facilitates the realization of stacked multilayered LSCs, where enhanced performance is obtained through spectral splitting of incident sunlight, as in multijunction photovoltaics. Here, we demonstrate a large-area (>230 cm2) tandem LSC based on two types of nearly reabsorption-free quantum dots spectrally tuned for optimal solar-spectrum splitting. This prototype device exhibits a high optical quantum efficiency of 6.4% for sunlight illumination and solar-to-electrical power conversion efficiency of 3.1%. The efficiency gains due to the tandem architecture over single-layer devices quickly increase with increasing LSC size and can reach more than 100% in structures with window sizes of more than 2,500 cm2.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Concept of solar-spectrum splitting in a tandem LSC.
Fig. 2: Characterization of the bottom tandem-LSC layer based on CuInSe2/ZnS (CISe/ZnS) QDs.
Fig. 3: Characterization of the top tandem-LSC layer based on Mn2+-doped Cd x Zn1−x S/ZnS (CdZnS/ZnS) QDs.
Fig. 4: A tandem LSC made of the Mn2+:CdZnS-QD top layer and the CISe-QD bottom layer.

References

  1. 1.

    Weber, W. & Lambe, J. Luminescent greenhouse collector for solar radiation. Appl. Opt. 15, 2299–2300 (1976).

    ADS  Article  Google Scholar 

  2. 2.

    Batchelder, J. S., Zewail, A. H. & Cole, T. Luminescent solar concentrators. 1. Theory of operation and techniques for performance evaluation. Appl. Opt. 18, 3090–3110 (1979).

    ADS  Article  Google Scholar 

  3. 3.

    Currie, M. J., Mapel, J. K., Heidel, T. D., Goffri, S. & Baldo, M. A. High-efficiency organic solar concentrators for photovoltaics. Science 321, 226–228 (2008).

    ADS  Article  Google Scholar 

  4. 4.

    Debije, M. G. & Verbunt, P. P. C. Thirty years of luminescent solar concentrator research: solar energy for the built environment. Adv. Energ. Mater. 2, 12–35 (2012).

    Article  Google Scholar 

  5. 5.

    van Sark, W. G. J. H. M. et al. Luminescent solar concentrators—a review of recent results. Opt. Express 16, 21773–21792 (2008).

    ADS  Article  Google Scholar 

  6. 6.

    Li, H., Wu, K., Lim, J., Song, H.-J. & Klimov, V. I. Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators. Nat. Energy 1, 16157 (2016).

    ADS  Article  Google Scholar 

  7. 7.

    Meinardi, F. et al. Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots. Nat. Nanotech. 10, 878–885 (2015).

    ADS  Article  Google Scholar 

  8. 8.

    Zhao, Y. & Lunt, R. R. Transparent luminescent solar concentrators for large-area solar windows enabled by massive Stokes-shift nanocluster phosphors. Adv. Energ. Mater. 3, 1143–1148 (2013).

    Article  Google Scholar 

  9. 9.

    Sholin, V., Olson, J. D. & Carter, S. A. Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting. J. Appl. Phys. 101, 123114 (2007).

    ADS  Article  Google Scholar 

  10. 10.

    Vossen, F. M., Aarts, M. P. J. & Debije, M. G. Visual performance of red luminescent solar concentrating windows in an office environment. Energy Build. 113, 123–132 (2016).

    Article  Google Scholar 

  11. 11.

    Pritchard, J., Simon, K., Dowd, C. & Joshi, E. Solar power concentrators for space applications. PAM Rev. Energy Sci. Tech. 3, 2–26 (2016).

    Article  Google Scholar 

  12. 12.

    Cambié, D., Zhao, F., Hessel, V., Debije, M. G. & Noël, T. A leaf-inspired luminescent solar concentrator for energy-efficient continuous-flow photochemistry. Angew. Chem. Int. Ed. 56, 1050–1054 (2017).

    Article  Google Scholar 

  13. 13.

    Wilson, L. R., Klampaftis, E. & Richards, B. S. Enhancement of power output from a large-area luminescent solar concentrator with 4.8× concentration via solar cell current matching. IEEE J. Photovolt. 7, 802–809 (2017).

    Article  Google Scholar 

  14. 14.

    Zhao, Y., Meek, G. A., Levine, B. G. & Lunt, R. R. Near-infrared harvesting transparent luminescent solar concentrators. Adv. Opt. Mater. 2, 606–611 (2014).

    Article  Google Scholar 

  15. 15.

    Gutierrez, G. D., Coropceanu, I., Bawendi, M. G. & Swager, T. M. A low reabsorbing luminescent solar concentrator employing π-conjugated polymers. Adv. Mater. 28, 497–501 (2016).

    Article  Google Scholar 

  16. 16.

    Nikolaidou, K. et al. Hybrid perovskite thin films as highly efficient luminescent solar concentrators. Adv. Opt. Mater. 4, 2126–2132 (2016).

    Article  Google Scholar 

  17. 17.

    Zhao, H., Zhou, Y., Benetti, D., Ma, D. & Rosei, F. Perovskite quantum dots integrated in large-area luminescent solar concentrators. Nano Energy 37, 214–223 (2017).

    Article  Google Scholar 

  18. 18.

    Pietryga, J. M. et al. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 116, 10513–10622 (2016).

    Article  Google Scholar 

  19. 19.

    Klimov, V. I., Baker, T. A., Lim, J., Velizhanin, K. A. & McDaniel, H. Quality factor of luminescent solar concentrators and practical concentration limits attainable with semiconductor quantum dots. ACS Photon. 3, 1138–1148 (2016).

    Article  Google Scholar 

  20. 20.

    Li, C. et al. Large Stokes shift and high efficiency luminescent solar concentrator incorporated with CuInS2/ZnS quantum dots. Sci. Rep. 5, 17777 (2015).

    ADS  Article  Google Scholar 

  21. 21.

    Bronstein, N. D. et al. Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration. ACS Photon. 2, 1576–1583 (2015).

    Article  Google Scholar 

  22. 22.

    Erickson, C. S. et al. Zero-reabsorption doped-nanocrystal luminescent solar concentrators. ACS Nano 8, 3461–3467 (2014).

    Article  Google Scholar 

  23. 23.

    Coropceanu, I. & Bawendi, M. G. Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency. Nano Lett. 14, 4097–4101 (2014).

    ADS  Article  Google Scholar 

  24. 24.

    Krumer, Z. et al. Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots. Sol. Energy Mater. Sol. Cells 111, 57–65 (2013).

    Article  Google Scholar 

  25. 25.

    Bradshaw, L. R., Knowles, K. E., McDowall, S. & Gamelin, D. R. Nanocrystals for luminescent solar concentrators. Nano Lett. 15, 1315–1323 (2015).

    ADS  Article  Google Scholar 

  26. 26.

    Meinardi, F. et al. Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix. Nat. Photon. 8, 392–399 (2014).

    ADS  Article  Google Scholar 

  27. 27.

    Zhou, Y. et al. Near infrared, highly efficient luminescent solar concentrators. Adv. Energ. Mater. 6, 1501913 (2016).

    Article  Google Scholar 

  28. 28.

    Meinardi, F. et al. Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots. Nat. Photon. 11, 177–185 (2017).

    ADS  Article  Google Scholar 

  29. 29.

    Knowles, K. E., Kilburn, T. B., Alzate, D. G., McDowall, S. & Gamelin, D. R. Bright CuInS2/CdS nanocrystal phosphors for high-gain full-spectrum luminescent solar concentrators. Chem. Commun. 51, 9129–9132 (2015).

    Article  Google Scholar 

  30. 30.

    Tummeltshammer, C. et al. On the ability of Förster resonance energy transfer to enhance luminescent solar concentrator efficiency. Nano Energy 32, 263–270 (2017).

    Article  Google Scholar 

  31. 31.

    Santra, P. K. & Kamat, P. V. Tandem-layered quantum dot solar cells: tuning the photovoltaic response with luminescent ternary cadmium chalcogenides. J. Am. Chem. Soc. 135, 877–885 (2013).

    Article  Google Scholar 

  32. 32.

    Takamoto, T., Ikeda, E., Kurita, H. & Ohmori, M. Over 30% efficient InGaP/GaAs tandem solar cells. Appl. Phys. Lett. 70, 381–383 (1997).

    ADS  Article  Google Scholar 

  33. 33.

    Vos, A. D. Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D 13, 839 (1980).

    ADS  Article  Google Scholar 

  34. 34.

    Chatten, A. J., Barnham, K. W. J., Buxton, B. F., Ekins-Daukes, N. J. & Malik, M. A. A new approach to modelling quantum dot concentrators. Sol. Energy Mater. Sol. Cells 75, 363–371 (2003).

    Article  Google Scholar 

  35. 35.

    Goetzberger, A. & Greube, W. Solar energy conversion with fluorescent collectors. Appl. Phys. 14, 123–139 (1977).

    ADS  Article  Google Scholar 

  36. 36.

    Rice, W. D., McDaniel, H., Klimov, V. I. & Crooker, S. A. Magneto-optical properties of CuInS2 nanocrystals. J. Phys. Chem. Lett. 5, 4105–4109 (2014).

    Article  Google Scholar 

  37. 37.

    Knowles, K. E., Nelson, H. D., Kilburn, T. B. & Gamelin, D. R. Singlet–triplet splittings in the luminescent excited states of colloidal Cu+:CdSe, Cu+:InP, and CuInS2 nanocrystals: charge-transfer configurations and self-trapped excitons. J. Am. Chem. Soc. 137, 13138–13147 (2015).

    Article  Google Scholar 

  38. 38.

    Rurack, K. & Spieles, M. Fluorescence quantum yields of a series of red and near-infrared dyes emitting at 600−1000 nm. Anal. Chem. 83, 1232–1242 (2011).

    Article  Google Scholar 

  39. 39.

    Zang, H. et al. Thick-shell CuInS2/ZnS quantum dots with suppressed ‘blinking’ and narrow single-particle emission line widths. Nano Lett. 17, 1787–1795 (2017).

    ADS  Article  Google Scholar 

  40. 40.

    McDaniel, H. et al. Simple yet versatile synthesis of CuInSe x S2–x quantum dots for sunlight harvesting. J. Phys. Chem. C 118, 16987–16994 (2014).

    Article  Google Scholar 

  41. 41.

    Yarema, O. et al. Highly luminescent, size- and shape-tunable copper indium selenide based colloidal nanocrystals. Chem. Mater. 25, 3753–3757 (2013).

    Article  Google Scholar 

  42. 42.

    Slooff, L. H. et al. A luminescent solar concentrator with 7.1% power conversion efficiency. Phys. Status Solidi Rapid Res. Lett. 2, 257–259 (2008).

    ADS  Article  Google Scholar 

  43. 43.

    Beaulac, R., Archer, P. I. & Gamelin, D. R. Luminescence in colloidal Mn2+-doped semiconductor nanocrystals. J. Solid State Chem. 181, 1582–1589 (2008).

    ADS  Article  Google Scholar 

  44. 44.

    Levchuk, I. et al. Industrially scalable and cost-effective Mn2+ doped Zn x Cd1−x S/ZnS nanocrystals with 70% photoluminescence quantum yield, as efficient down-shifting materials in photovoltaics. Energy Environ. Sci. 9, 1083–1094 (2016).

    Article  Google Scholar 

  45. 45.

    Zhao, H. et al. Absorption enhancement in ‘giant’ core/alloyed-shell quantum dots for luminescent solar concentrator. Small 12, 5354–5365 (2016).

    Article  Google Scholar 

  46. 46.

    Sumner, R. et al. Analysis of optical losses in high-efficiency CuInS2-based nanocrystal luminescent solar concentrators: balancing absorption versus scattering. J. Phys. Chem. C 121, 3252–3260 (2017).

    Article  Google Scholar 

  47. 47.

    Bomm, J. et al. Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators. Sol. Energy Mater. Sol. Cells 95, 2087–2094 (2011).

    Article  Google Scholar 

  48. 48.

    Goldschmidt, J. C. et al. Increasing the efficiency of fluorescent concentrator systems. Sol. Energy Mater. Sol. Cells 93, 176–182 (2009).

    Article  Google Scholar 

  49. 49.

    Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 42). Prog. Photovolt. Res. Appl. 21, 827–837 (2013).

    Article  Google Scholar 

  50. 50.

    Panthani, M. G. et al. CuInSe2 quantum dot solar cells with high open-circuit voltage. J. Phys. Chem. Lett. 4, 2030–2034 (2013).

    Article  Google Scholar 

  51. 51.

    Du, J. et al. Zn-Cu-In-Se quantum dot solar cells with a certified power conversion efficiency of 11.6%. J. Am. Chem. Soc. 138, 4201–4209 (2016).

    Article  Google Scholar 

  52. 52.

    Li, L. et al. Efficient synthesis of highly luminescent copper indium sulfide-based core/shell nanocrystals with surprisingly long-lived emission. J. Am. Chem. Soc. 133, 1176–1179 (2011).

    Article  Google Scholar 

  53. 53.

    Zhang, A. et al. Non-blinking (Zn)CuInS/ZnS quantum dots prepared by in situ interfacial alloying approach. Sci. Rep. 5, 15227 (2015).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Centre for Advanced Solar Photophysics (CASP), an Energy Frontier Research Centre funded by the US Department of Energy, Office of Science, Basic Energy Sciences. K.W. is a CASP member supported by a LANL Director’s Postdoctoral Fellowship.

Author information

Affiliations

Authors

Contributions

K.W. and V.I.K. conceived the idea and designed the experiments. H.L. synthesized CuInSe2/ZnS quantum dots. K.W. synthesized Mn2+-doped CdZnS/ZnS quantum dots. H.L. performed microstructural characterizations and stability measurements of the quantum dots. K.W. fabricated and measured the LSC devices and analysed the data. K.W. and V.I.K. wrote the manuscript.

Corresponding author

Correspondence to Victor I. Klimov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5; Supplementary Figures 1–17; Supplementary Tables 1–7; Supplementary References 1–19.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Li, H. & Klimov, V.I. Tandem luminescent solar concentrators based on engineered quantum dots. Nature Photon 12, 105–110 (2018). https://doi.org/10.1038/s41566-017-0070-7

Download citation

Further reading