Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Active tuning of surface phonon polariton resonances via carrier photoinjection

Abstract

Surface phonon polaritons (SPhPs) are attractive alternatives to infrared plasmonics for subdiffractional confinement of infrared light. Localized SPhP resonances in semiconductor nanoresonators are narrow, but that linewidth and the limited extent of the Reststrahlen band limit spectral coverage. To address this limitation, we report active tuning of SPhP resonances in InP and 4H-SiC by photoinjecting free carriers into nanoresonators, taking advantage of the coupling between the carrier plasma and optic phonons to blueshift SPhP resonances. We demonstrate state-of-the-art tuning figures of merit upon continuous-wave excitation (in InP) or pulsed excitation (in 4H-SiC). Lifetime effects cause the tuning to saturate in InP, and carrier redistribution leads to rapid (<50 ps) recovery of the resonance in 4H-SiC. This work demonstrates the potential for this method and opens a path towards actively tuned nanophotonic devices, such as modulators and beacons, in the infrared, and identifies important implications of coupling between electronic and phononic excitations.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Steady-state spectroscopy of InP and SiC nanopillar arrays.
Fig. 2: Continuous-wave carrier tuning of InP nanopillar array.
Fig. 3: Transient reflection spectroscopy of SiC nanopillar arrays.
Fig. 4: Time dependence of resonance recovery of 4H-SiC nanopillar array.

References

  1. Koenderink, A. F., Alu, A. & Polman, A. Nanophotonics: shrinking light-based technology. Science 348, 516–521 (2015).

    Article  ADS  Google Scholar 

  2. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    Article  ADS  Google Scholar 

  3. Adato, R. et al. Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proc. Natl Acad. Sci. USA 106, 19227–19232 (2009).

    Article  ADS  Google Scholar 

  4. Liu, Z., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Far-field optical hyperlens magnifying sub-diffraction limited objects. Science 315, 1686 (2007).

    Article  ADS  Google Scholar 

  5. Dai, S. et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat. Commun. 6, 6963 (2015).

    Article  Google Scholar 

  6. Li, P. et al. Hyperbolic phonon–polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015).

    Article  Google Scholar 

  7. Homola, J., Yee, S. S. & Gauglitz, G. Surface plasmon resonance sensors: Review. Sens. Acuat. B 54, 3–15 (1999).

    Article  Google Scholar 

  8. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    Article  ADS  Google Scholar 

  9. Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Article  Google Scholar 

  10. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article  ADS  Google Scholar 

  11. Greffet, J.-J. et al. Coherent emission of light by thermal sources. Nature 416, 61–64 (2002).

    Article  ADS  Google Scholar 

  12. Wang, T. et al. Phonon–polaritonic bowtie nanoantennas: controlling infrared thermal radiation at the nanoscale. ACS Photon. 4, 1753–1760 (2017).

    Article  Google Scholar 

  13. Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotech. 9, 780–793 (2014).

    Article  ADS  Google Scholar 

  14. Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Article  Google Scholar 

  15. Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    Article  ADS  Google Scholar 

  16. Caldwell, J. D. et al. Low-loss, extreme sub-diffraction photon confinement via silicon carbide surface phonon polariton nanopillar resonators. Nano Lett. 13, 3690–3697 (2013).

    Article  ADS  Google Scholar 

  17. Caldwell, J. D. et al. Sub-diffractional, volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

    Article  Google Scholar 

  18. Caldwell, J. D. et al. Low-loss, infrared and terahertz nanophotonics with surface phonon polaritons. Nanophotonics 4, 44–68 (2015).

    Article  Google Scholar 

  19. Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Article  ADS  Google Scholar 

  20. Hillenbrand, R., Taubner, T. & Keilmann, F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature 418, 159–162 (2002).

    Article  ADS  Google Scholar 

  21. Taubner, T., Korobkin, D., Urzhumov, Y., Shvets, G. & Hillenbrand, R. Near-field microscopy through a SiC superlens. Science 313, 1595 (2006).

    Article  Google Scholar 

  22. Feng, K. et al. Localized surface phonon polariton resonances in polar gallium nitride. Appl. Phys. Lett. 107, 081108 (2015).

    Article  ADS  Google Scholar 

  23. Wang, T., Li, P., Hauer, B., Chigrin, D. N. & Taubner, T. Optical properties of single infrared resonant circular microcavities for surface phonon polaritons. Nano Lett. 13, 5051–5055 (2013).

    Article  ADS  Google Scholar 

  24. Chen, Y. et al. Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications. ACS Photon. 1, 718–724 (2014).

    Article  Google Scholar 

  25. Khurgin, J. B. & Boltasseva, A. Reflecting upon the losses in plasmonics and metamaterials. MRS Bull. 37, 768–779 (2012).

    Article  Google Scholar 

  26. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010).

    Article  ADS  Google Scholar 

  27. Ferrera, M. et al. Dynamic nanophotonics. J. Opt. Soc. Am. B 34, 95–103 (2016).

    Article  ADS  Google Scholar 

  28. Harima, H., Nakashima, S. & Uemura, T. Raman-scattering from anisotropic LO-phonon–plasmon-coupled mode in n-type 4H-SiC and 6H-SiC. J. Appl. Phys. 78, 1996–2005 (1995).

    Article  ADS  Google Scholar 

  29. Mooradian, A. & Wright, G. B. Observation of interaction of plasmons with longitudinal optic phonons in GaAs. Phys. Rev. Lett. 16, 999–1001 (1966).

    Article  ADS  Google Scholar 

  30. Caldwell, J. D. et al. Free carrier distribution profiling of 4H-SiC substrates using a commercial optical scanner. J. Appl. Phys. 101, 093506 (2007).

    Article  ADS  Google Scholar 

  31. Nagai, M., Ohkawa, K. & Kuwata-Gonokami, M. Midinfrared pump–probe reflection spectroscopy of the coupled phonon–plasmon mode in GaN. Appl. Phys. Lett. 81, 484–486 (2002).

    Article  ADS  Google Scholar 

  32. Spann, B. T. et al. Photoinduced tunability of the reststrahlen band in 4H-SiC. Phys. Rev. B 93, 085205 (2016).

    Article  ADS  Google Scholar 

  33. Long, J. P., Caldwell, J. D., Owrutsky, J. C. & Glembocki, O. J. Actively tunable polar-dielectric optical devices. US patent 9,195,052 (2014).

  34. Karakachian, H. & Kazan, M. Dependence of surface plasmon-phonon-polariton in 4H-SiC on free carrier concentration. J. Appl. Phys. 121, 093103 (2017).

    Article  ADS  Google Scholar 

  35. Ellis, C. T. et al. Aspect-ratio driven evolution of high-order resonant modes and near-field distributions in localized surface phonon polariton nanostructures. Sci. Rep. 6, 32959 (2016).

    Article  ADS  Google Scholar 

  36. Boudart, B., Prevot, B. & Schwab, C. Free-carrier concentration in n-doped InP crystals determined by Raman-scattering measurements. Appl. Surf. Sci. 50, 295–299 (1991).

    Article  ADS  Google Scholar 

  37. Irmer, G., Wenzel, M. & Monecke, J. The temperature dependence of the LO(Γ) and TO(Γ) phonons in GaAs and InP. Phys. Status Solidi B 195, 85–95 (1996).

    Article  ADS  Google Scholar 

  38. Liu, A. & Rosenwaks, Y. Excess carrier lifetime in InP single crystals: radiative versus nonradiative recombination. J. Appl. Phys. 86, 430–437 (1999).

    Article  ADS  Google Scholar 

  39. Li, K. et al. Wurtzite-phased InP micropillars grown on silicon with low surface recombination velocity. Nano Lett. 15, 7189–1798 (2015).

    Article  ADS  Google Scholar 

  40. Ahrenkiel, R. K. et al. Minority-carrier lifetime and photon recycling in n-GaAs. J. Vac. Sci. Technol. A 10, 990 (1992).

    Article  ADS  Google Scholar 

  41. Young, J. F. & van Driel, H. M. Ambipolar diffusion of high-density electrons and holes in Ge, Si, and GaAs: many-body effects. Phys. Rev. B 26, 2147–2158 (1982).

    Article  ADS  Google Scholar 

  42. Cusco, R., Ibanez, J. & Artus, L. Raman-scattering study of photoexcited plasma in semiconducting and semi-insulating InP. Phys. Rev. B 57, 12197–12206 (1998).

    Article  ADS  Google Scholar 

  43. Nakamura, T. & Katoda, T. Effects of optically excited carriers on Raman spectra from InP. J. Appl. Phys. 55, 3064–3067 (1984).

    Article  ADS  Google Scholar 

  44. Scajev, P., Gudelis, V., Jarasiunas, K. & Klein, P. B. Fast and slow carrier recombination transients in highly excited 4H- and 3C-SiC crystals at room temperature. J. Appl. Phys. 108, 023705 (2010).

    Article  ADS  Google Scholar 

  45. Zollner, S. et al. Dielectric functions of bulk 4H- and 6H-SIC and spectroscopic ellipsometry studies of thin SiC films on SI. J. Appl. Phys. 85, 8353–8361 (1999).

    Article  ADS  Google Scholar 

  46. Li, P. et al. Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material. Nat. Mater. 15, 870–875 (2016).

    Article  ADS  Google Scholar 

  47. Si, G. et al. All-optical, polarizaton-insensitive light tuning properties in silver nanorod arrays covered with photoresponsive liquid crystals. Phys. Chem. Chem. Phys. 17, 13223–13227 (2015).

    Article  Google Scholar 

  48. Gao, W. et al. Excitation and active control of propagating surface plasmon polaritons in graphene. Nano Lett. 13, 3698–3702 (2013).

    Article  ADS  Google Scholar 

  49. Michel, A.-K. U. et al. Using low-loss phase-change materials for mid-infrared antenna resonance tuning. Nano Lett. 13, 3470–3475 (2013).

    Article  ADS  Google Scholar 

  50. Yao, Y. et al. Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett. 13, 1257–1264 (2013).

    Article  ADS  Google Scholar 

  51. Fang, Z. Y. et al. Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano 7, 2388–2395 (2013).

    Article  Google Scholar 

  52. Ni, G. X. et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nat. Photon. 10, 244–247 (2016).

    Article  ADS  Google Scholar 

  53. Wagner, M. et al. Ultrafast and nanoscale plasmonic phenomena in exfoliated graphene revealed by infrared pump–probe nanoscopy. Nano Lett. 14, 894–900 (2014).

    Article  ADS  Google Scholar 

  54. Tiwald, T. E. et al. Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry. Phys. Rev. B 60, 11464–11474 (1999).

    Article  ADS  Google Scholar 

  55. Grivickas, P., Linnros, J. & Grivickas, V. Carrier diffusion characterization in 4H-SiC. J. Mater. Res. 16, 524–528 (2001).

    Article  ADS  Google Scholar 

  56. Caldwell, J. D. et al. Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics. Nat. Nanotech. 11, 9–15 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Ancona for discussions. A.D.D., C.T.E. and A.J.G. acknowledge support from the National Research Council (NRC)–NRL Postdoctoral Fellowship and Karles Fellowship programmes. This work was funded via the Office of Naval Research through the Nanoscience Institute at the US Naval Research Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

J.P.L., I.V., J.D.C., J.C.O. and O.J.G. devised the original concept. A.D.D., C.T.E., J.C.O., J.G.T., J.P.L., O.J.G. and J.D.C. devised the experiment. A.J.G., M.K. and C.S.K. fabricated the samples. A.D.D. and B.T.S. carried out the transient reflectance measurements on SiC nanopillars under the direction of J.C.O. and D.C.R. modelled the results. C.T.E. and J.G.T. carried out the steady-state reflectance measurements on InP nanopillars and I.V. modelled the results. C.T.E. and O.J.G. performed the finite-element method simulations. The project was supervised by J.G.T., J.C.O. and J.D.C.

Corresponding author

Correspondence to Joshua D. Caldwell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary results and analysis; Supplementary Figures 1–11; Supplementary Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dunkelberger, A.D., Ellis, C.T., Ratchford, D.C. et al. Active tuning of surface phonon polariton resonances via carrier photoinjection. Nature Photon 12, 50–56 (2018). https://doi.org/10.1038/s41566-017-0069-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-017-0069-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing