Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Broadband gate-tunable terahertz plasmons in graphene heterostructures


Graphene, a unique two-dimensional material comprising carbon in a honeycomb lattice1, has brought breakthroughs across electronics, mechanics and thermal transport, driven by the quasiparticle Dirac fermions obeying a linear dispersion2,3. Here, we demonstrate a counter-pumped all-optical difference frequency process to coherently generate and control terahertz plasmons in atomic-layer graphene with octave-level tunability and high efficiency. We leverage the inherent surface asymmetry of graphene for strong second-order nonlinear polarizability4,5, which, together with tight plasmon field confinement, enables a robust difference frequency signal at terahertz frequencies. The counter-pumped resonant process on graphene uniquely achieves both energy and momentum conservation. Consequently, we demonstrate a dual-layer graphene heterostructure with terahertz charge- and gate-tunability over an octave, from 4.7 THz to 9.4 THz, bounded only by the pump amplifier optical bandwidth. Theoretical modelling supports our single-volt-level gate tuning and optical-bandwidth-bounded 4.7 THz phase-matching measurements through the random phase approximation, with phonon coupling, saturable absorption and below the Landau damping, to predict and understand graphene plasmon physics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generating and controlling terahertz plasmons in graphene heterostructures via counter-pumped all-optical nonlinear processes.
Fig. 2: Observation and gate tunability of the DFG graphene plasmons.
Fig. 3: Counter-pumped phase-matching conditions.
Fig. 4: Conversion efficiency.

Similar content being viewed by others


  1. Geim, A. & Novoselov, K. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    Article  ADS  Google Scholar 

  2. Zhang, Y., Tan, Y., Stormer, H. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  ADS  Google Scholar 

  3. Novoselov, K. et al. A roadmap for graphene. Nature 490, 192–200 (2012).

    Article  ADS  Google Scholar 

  4. Constant, T., Hornett, S., Chang, D. & Henry, E. All-optical generation of surface plasmons in graphene. Nat. Phys. 12, 124–127 (2016).

    Article  Google Scholar 

  5. Yao, X., Tokman, M. & Belyanin, A. Efficient nonlinear generation of THz plasmons in graphene and topological insulators. Phys. Rev. Lett. 112, 055501 (2014).

    Article  ADS  Google Scholar 

  6. Abajo, F. Graphene nanophotonics. Science 339, 917–918 (2013).

    Article  ADS  Google Scholar 

  7. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. Graphene photonics and optoelectronics. Nat. Photon. 4, 611–622 (2010).

    Article  ADS  Google Scholar 

  8. Katsnelson, M., Novoselov, K. & Geim, A. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2, 620–625 (2006).

    Article  Google Scholar 

  9. Nair, R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308–1310 (2008).

    Article  ADS  Google Scholar 

  10. Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291–1294 (2011).

    Article  ADS  Google Scholar 

  11. Cox, J. & Abajo, F. Electrically tunable nonlinear plasmonics in graphene nanoislands. Nat. Commun. 5, 5725 (2014).

    Article  Google Scholar 

  12. Hendry, E., Hale, P., Moger, J., Savchnko, A. & Mikhailov, S. Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 105, 097401 (2010).

    Article  ADS  Google Scholar 

  13. Bostwick, A. et al. Observation of plasmarons in quasi-freestanding doped graphene. Science 328, 999–1002 (2010).

    Article  ADS  Google Scholar 

  14. Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotech. 6, 630–634 (2011).

    Article  ADS  Google Scholar 

  15. Gu, T. et al. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat. Photon. 6, 554–559 (2012).

    Article  ADS  Google Scholar 

  16. Bostwick, A., Ohta, T., Seyller, T., Horn, K. & Rotenberg, E. Quasiparticle dynamics in graphene. Nat. Phys. 3, 36–40 (2007).

    Article  Google Scholar 

  17. Grigorenko, A., Polini, M. & Novoselov, K. Graphene plasmonics. Nat. Photon. 6, 749–758 (2012).

    Article  ADS  Google Scholar 

  18. Ansell, D. et al. Hybrid graphene plasmonic waveguide modulators. Nat. Commun. 6, 8846 (2015).

    Article  Google Scholar 

  19. Freitag, M. et al. Photocurrent in graphene harnessed by tunable intrinsic plasmons. Nat. Commun. 4, 1951 (2013).

    Article  Google Scholar 

  20. Chakraborty, S. et al. Gain modulation by graphene plasmons in aperiodic lattice lasers. Science 351, 246–248 (2016).

    Article  ADS  Google Scholar 

  21. Yao, B. et al. Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers. Sci. Rep. 5, 18526 (2015).

    Article  ADS  Google Scholar 

  22. Rodrigo, D. et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015).

    Article  ADS  Google Scholar 

  23. Boltasseva, A. & Atwater., H. Low-loss plasmonic metamaterials. Science 331, 290–291 (2011).

    Article  ADS  Google Scholar 

  24. Alonso-González, P. et al. Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns. Science 334, 1369–1373 (2014).

    Article  ADS  Google Scholar 

  25. Alonso-González, P. et al. Acoustic terahertz graphene plasmon revealed by photocurrent nanoscopy. Nat. Nanotech. 12, 31–35 (2017).

    Article  ADS  Google Scholar 

  26. Nikitin, A. et al. Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators. Nat. Photon. 10, 239–243 (2016).

    Article  ADS  Google Scholar 

  27. Ni, G. et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nat. Photon. 10, 244–247 (2016).

    Article  ADS  Google Scholar 

  28. Yan, H. et al. Tunable infrared plasmonic devices using graphene/insulator stacks. Nat. Nanotech. 7, 330–334 (2012).

    Article  ADS  Google Scholar 

  29. Editorial. Terahertz optics taking off. Nat. Photon. 7, 665 (2013).

    Article  Google Scholar 

  30. Lan, S. et al. Backward phase-matching for nonlinear optical generation in negative-index materials. Nat. Mater. 14, 807–811 (2015).

    Article  ADS  Google Scholar 

Download references


The authors thank E. Kinigstein, M. Hoff, J. Lim, J. Yang, Y.-P. Lai and Y. Li for discussions and H. Liu for help with the buffered oxide etch. Chip fabrication was also supported by the Nanoelectronics Research Facilities (NRF) of UCLA. The authors acknowledge support from the National Science Foundation (DMR-1611598, CBET-1520949 and EFRI-1433541), the Office of Naval Research (N00014-15-1-2368) and the University of California National Laboratory programme. This work was also supported by the National Science Foundation of China (61705032) and the 111 project of China (B14039).

Author information

Authors and Affiliations



B.Y. designed and led the work. B.Y., S.-W.H. and Z.X. performed optical measurements and data analysis. B.Y., C.C., J.F.F., M.Y. and D.-L.K. performed silicon nitride chip processing. Y.L., Y.H. and X.D. conducted graphene material growth and characterizations, designed and fabricated the graphene devices, and conducted the relevant electrical measurements. B.Y., Y.L. and C.C. contributed the device characterizations. C.W.W. and Y.R. supported and supervised the research. B.Y., S.H., Z.X. and Y.W. discussed and performed the theoretical analysis and simulations. B.Y., S.H., Y.R. and C.W.W. prepared the manuscript.

Corresponding authors

Correspondence to Baicheng Yao, Xiangfeng Duan or Chee Wei Wong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, B., Liu, Y., Huang, SW. et al. Broadband gate-tunable terahertz plasmons in graphene heterostructures. Nature Photon 12, 22–28 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing