Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre

Abstract

Holographic optical tweezers (HOT) hold great promise for many applications in biophotonics, allowing the creation and measurement of minuscule forces on biomolecules, molecular motors and cells. Geometries used in HOT currently rely on bulk optics, and their exploitation in vivo is compromised by the optically turbid nature of tissues. We present an alternative HOT approach in which multiple three-dimensional (3D) traps are introduced through a high-numerical-aperture multimode optical fibre, thus enabling an equally versatile means of manipulation through channels having cross-section comparable to the size of a single cell. Our work demonstrates real-time manipulation of 3D arrangements of micro-objects, as well as manipulation inside otherwise inaccessible cavities. We show that the traps can be formed over fibre lengths exceeding 100 mm and positioned with nanometric resolution. The results provide the basis for holographic manipulation and other high-numerical-aperture techniques, including advanced microscopy, through single-core-fibre endoscopes deep inside living tissues and other complex environments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: High-resolution focusing through an MMF.
Fig. 2: Multiple holographic tweezers delivered through a lensless MMF.
Fig. 3: Particle tracking based on symmetry and principal component analysis.
Fig. 4: Performance of MMF-based holographic tweezers.

References

  1. 1.

    Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    ADS  Article  Google Scholar 

  2. 2.

    Fazal, F. M. & Block, S. M. Optical tweezers study life under tension. Nat. Photon. 5, 318–321 (2011).

    ADS  Article  Google Scholar 

  3. 3.

    Svoboda, K. & Block, S. M. Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994).

    Article  Google Scholar 

  4. 4.

    Bustamante, C., Macosko, J. C. & Wuite, G. J. L. Grabbing the cat by the tail: manipulating molecules one by one. Nat. Rev. Mol. Cell. Biol. 1, 130–136 (2000).

    Article  Google Scholar 

  5. 5.

    Bustamante, C., Bryant, Z. & Smith, S. B. Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427 (2003).

    ADS  Article  Google Scholar 

  6. 6.

    Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    ADS  Article  Google Scholar 

  7. 7.

    Dholakia, K. & Reece, P. Optical micromanipulation takes hold. Nano Today 1, 18–27 (February, 2006).

    Article  Google Scholar 

  8. 8.

    Padgett, M. & Di Leonardo, R. Holographic optical tweezers and their relevance to lab on chip devices. Lab Chip 11, 1196–1205 (2011).

    Article  Google Scholar 

  9. 9.

    Denk, W., Strickler, J. & Webb, W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    ADS  Article  Google Scholar 

  10. 10.

    Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    ADS  Article  Google Scholar 

  11. 11.

    Dickson, R. M., Cubitt, A. B., Tsien, R. Y. & Moerner, W. E. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388, 355–358 (1997).

    ADS  Article  Google Scholar 

  12. 12.

    Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    ADS  Article  Google Scholar 

  13. 13.

    Jun, Y., Tripathy, S. K., Narayanareddy, B. R., Mattson-Hoss, M. K. & Gross, S. P. Calibration of optical tweezers for in vivo force measurements: how do different approaches compare? Biophys. J. 107, 1474–1484 (2014).

    ADS  Article  Google Scholar 

  14. 14.

    Zhong, M.-C., Wei, X.-B., Zhou, J.-H., Wang, Z.-Q. & Li, Y.-M. Trapping red blood cells in living animals using optical tweezers. Nat. Commun. 4, 1768 (2013).

    Article  Google Scholar 

  15. 15.

    Bambardekar, K., Clément, R., Blanc, O., Chardès, C. & Lenne, P.-F. Direct laser manipulation reveals the mechanics of cell contacts in vivo. Proc. Natl Acad. Sci. USA 112, 1416–1421 (2015).

    ADS  Article  Google Scholar 

  16. 16.

    Constable, A., Kim, J., Mervis, J., Zarinetchi, F. & Prentiss, M. Demonstration of a fiber-optical light-force trap. Opt. Lett. 18, 1867–1869 (1993).

    ADS  Article  Google Scholar 

  17. 17.

    Ribeiro, R. S. R., Soppera, O., Oliva, A. G., Guerreiro, A. & Jorge, P. A. S. New trends on optical fiber tweezers. J. Lightw. Technol. 33, 3394–3405 (2015).

    ADS  Article  Google Scholar 

  18. 18.

    Liberale, C. et al. Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation. Nat. Photon. 1, 723–727 (2007).

    ADS  Article  Google Scholar 

  19. 19.

    Berthelot, J. et al. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nat. Nanotech. 9, 295–299 (2014).

    ADS  Article  Google Scholar 

  20. 20.

    Guck, J., Ananthakrishnan, R., Moon, T. J., Cunningham, C. C. & Käs, J. Optical deformability of soft biological dielectrics. Phys. Rev. Lett. 84, 5451–5454 (2000).

    ADS  Article  Google Scholar 

  21. 21.

    Guck, J. et al. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 88, 3689–3698 (2005).

    ADS  Article  Google Scholar 

  22. 22.

    Kreysing, M. K. et al. The optical cell rotator. Opt. Express. 16, 16984–16992 (2008).

    Article  Google Scholar 

  23. 23.

    Kreysing, M. et al. Dynamic operation of optical fibres beyond the single-mode regime facilitates the orientation of biological cells. Nat. Commun. 5, 5481 (2014).

    Article  Google Scholar 

  24. 24.

    Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photon. 6, 283–292 (2012).

    ADS  Article  Google Scholar 

  25. 25.

    Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

    ADS  Article  Google Scholar 

  26. 26.

    Bertolotti, J. et al. Non-invasive imaging through opaque scattering layers. Nature 491, 232–234 (2012).

    ADS  Article  Google Scholar 

  27. 27.

    Čižmár, T., Mazilu, M. & Dholakia, K. In situ wavefront correction and its application to micromanipulation. Nat. Photon. 4, 388–394 (2010).

    ADS  Article  Google Scholar 

  28. 28.

    Di Leonardo, R. & Bianchi, S. Hologram transmission through multi-mode optical fibers. Opt. Express. 19, 247–254 (2011).

    ADS  Article  Google Scholar 

  29. 29.

    Čižmár, T. & Dholakia, K. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt. Express 19, 18871–18884 (2011).

    ADS  Article  Google Scholar 

  30. 30.

    Bianchi, S. & Di Leonardo, R. A multi-mode fiber probe for holographic micromanipulation and microscopy. Lab Chip 12, 635–639 (2012).

    Article  Google Scholar 

  31. 31.

    Čižmár, T. & Dholakia, K. Exploiting multimode waveguides for pure fibre-based imaging. Nat. Commun. 3, 1027 (2012).

    Article  Google Scholar 

  32. 32.

    Choi, Y. et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett. 109, 203901 (2012).

    ADS  Article  Google Scholar 

  33. 33.

    Papadopoulos, I. N., Farahi, S., Moser, C. & Psaltis, D. High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber. Biomed. Opt. Express 4, 260–270 (2013).

    Article  Google Scholar 

  34. 34.

    Papadopoulos, I. N., Farahi, S., Moser, C. & Psaltis, D. Focusing and scanning light through a multimode optical fiber using digital phase conjugation. Opt. Express 20, 10583–10590 (2012).

    ADS  Article  Google Scholar 

  35. 35.

    Plöschner, M., Tyc, T. & Čižmár, T. Seeing through chaos in multimode fibres. Nat. Photon. 9, 529–535 (2015).

    ADS  Article  Google Scholar 

  36. 36.

    Morales-Delgado, E. E., Psaltis, D. & Moser, C. Two-photon imaging through a multimode fiber. Opt. Express 23, 32158–32170 (2015).

    ADS  Article  Google Scholar 

  37. 37.

    Plöschner, M. et al. Multimode fibre: light-sheet microscopy at the tip of a needle. Sci. Rep. 5, 18050 (2015).

    ADS  Article  Google Scholar 

  38. 38.

    Amitonova, L. V. et al. High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging. Opt. Lett. 41, 497–500 (2016).

    ADS  Article  Google Scholar 

  39. 39.

    Papadopoulos, I. N., Farahi, S., Moser, C. & Psaltis, D. Increasing the imaging capabilities of multimode fibers by exploiting the properties of highly scattering media. Opt. Lett. 38, 2776–2778 (2013).

    ADS  Article  Google Scholar 

  40. 40.

    Choi, Y., Yoon, C., Kim, M., Yang, J. & Choi, W. Disorder-mediated enhancement of fiber numerical aperture. Opt. Lett. 38, 2253–2255 (2013).

    ADS  Article  Google Scholar 

  41. 41.

    Bianchi, S. et al. Focusing and imaging with increased numerical apertures through multimode fibers with micro-fabricated optics. Opt. Lett. 38, 4935–4937 (2013).

    ADS  Article  Google Scholar 

  42. 42.

    Wadsworth, W. J. et al. Very high numerical aperture fibers. IEEE Photon. Technol. Lett. 16, 843–845 (2004).

    ADS  Article  Google Scholar 

  43. 43.

    Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

    ADS  Article  Google Scholar 

  44. 44.

    Popoff, S. M., Lerosey, G., Fink, M., Boccara, A. C. & Gigan, S. Image transmission through an opaque material. Nat. Commun. 1, 1–5 (2010).

    Article  Google Scholar 

  45. 45.

    Gloge, D. Weakly guiding fibers. Appl. Opt. 10, 2252–2258 (1971).

    ADS  Article  Google Scholar 

  46. 46.

    Issa, N. A. High numerical aperture in multimode microstructured optical fibers. Appl. Opt. 43, 6191–6197 (2004).

    ADS  Article  Google Scholar 

  47. 47.

    Ho, K.-P. & Kahn, J. M. Mode-dependent loss and gain: statistics and effect on mode-division multiplexing. Opt. Express 19, 16612–16635 (2011).

    ADS  Article  Google Scholar 

  48. 48.

    Neuman, K. C. & Block, S. M. Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004).

    ADS  Article  Google Scholar 

  49. 49.

    Jiang, X. et al. Single-mode hollow-core photonic crystal fiber made from soft glass. Opt. Express 19, 15438–15444 (2011).

    ADS  Article  Google Scholar 

  50. 50.

    Jiang, X. et al. Supercontinuum generation in ZBLAN glass photonic crystal fiber with six nanobore cores. Opt. Lett. 41, 4245–4248 (2016).

    ADS  Article  Google Scholar 

  51. 51.

    Richards, B. & Wolf, E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc. R. Soc. A 253, 358–379 (1959).

    ADS  Article  MATH  Google Scholar 

  52. 52.

    Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, Cambridge, 2006).

    Book  Google Scholar 

  53. 53.

    Kramers, H. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940).

    ADS  MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

I.T.L. and S.T. acknowledge funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007–2013) under REA grant agreement no. 608144. I.T.L., S.T. and T.Č. also acknowledge financial support from the Thüringer Ministerium für Wirtschaft, Wissenschaft und Digitale Gesellschaft, the Thüringer Aufbaubank and the Federal Ministry of Education and Research, Germany (BMBF). M.Š. and T.Č. acknowledge support from the European Regional Development Fund through project no. CZ.02.1.01/0.0/0.0/15003/0000476. T.Č. also acknowledges the University of Dundee and SUPA (Scottish Universities Physics Alliance; PaLS initiative) for financial support. X.J. and P.St.J.R. thank F. Babic for assistance with drawing the fibres. The authors also thank K. Wilcox and Elliot Scientific Ltd for lending equipment used in the experiments.

Author information

Affiliations

Authors

Contributions

I.T.L., S.T. and T.Č. performed all experiments. X.J. and P.St.J.R. designed and manufactured the optical fibres. M.Š. modelled the optical tweezers. I.T.L., A.C. and T.Č. analysed the results. T.Č. led the project. I.T.L. and T.Č. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Tomáš Čižmár.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods and results. This file was missing when the Article was first published; it was uploaded 14 December 2017.

Videos

Supplementary Video 1

Dynamic holographic optical tweezers (HOT) manipulation of eight particles in a rotating cube arrangement.

Supplementary Video 2

Dynamic HOT manipulation of six particles illustrating Bohr’s model of the He atom.

Supplementary Video 3

Dynamic HOT axial manipulation of two particles.

Supplementary Video 4

Dynamic HOT manipulation inside a semi-opaque cavity.

Supplementary Video 5

Stability of a static HOT while bending the multimode fibre.

Supplementary Video 6

Simulation of focus fine positioning.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leite, I.T., Turtaev, S., Jiang, X. et al. Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre. Nature Photon 12, 33–39 (2018). https://doi.org/10.1038/s41566-017-0053-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing