Review Article | Published:

Non-reciprocal photonics based on time modulation

Nature Photonicsvolume 11pages774783 (2017) | Download Citation

Abstract

Reciprocity is a fundamental principle in optics, requiring that the response of a transmission channel is symmetric when source and observation points are interchanged. It is of major significance because it poses fundamental constraints on the way we process optical signals. Non-reciprocal devices, which break this symmetry, have become fundamental in photonic systems. Today they require magnetic materials that are bulky, costly and cannot be integrated. This is in stark contrast with most photonic devices, including sources, modulators, switches, waveguides, interconnects and antennas, which may be realized at the nanoscale. Here, we review recent progress and opportunities offered by temporal modulation to break reciprocity, revealing its potential for compact, low-energy, integrated non-reciprocal devices, and discuss the future of this exciting research field.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Potton, R. J. Reciprocity in optics. Rep. Prog. Phys. 67, 717–754 (2004).

  2. 2.

    Jalas, D. et al. What is — and what is not — an optical isolator. Nat. Photon 7, 579–582 (2013).

  3. 3.

    Fan, S. et al. Comment on ‘Nonreciprocal light propagation in a silicon photonic circuit’. Science 335, 38–38 (2012).

  4. 4.

    Dutton, H. J. R. Understanding Optical Communications (Prentice Hall PTR, Upper Saddle River, New Jersey, 1998).

  5. 5.

    Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).

  6. 6.

    Bharadia, D., McMilin, E. & Katti, S. Full duplex radios. ACM SIGCOMM Comp. Commun. Rev. 43, 375–386 (2013).

  7. 7.

    Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon 8, 821–829 (2014).

  8. 8.

    Rechtsman, M. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

  9. 9.

    Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. Imaging topological edge states in silicon photonics. Nat. Photon 7, 1001–1005 (2013).

  10. 10.

    Adam, J. D. et al. Ferrite devices and materials. IEEE Trans. Microw. Theory Technol. 50, 721–737 (2002).

  11. 11.

    Dötsch, H. et al. Applications of magneto-optical waveguides in integrated optics: review. J. Opt. Soc. Am. B 22, 240–253 (2005).

  12. 12.

    Shi, Y., Yu, Z. & Fan, S. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photon. 9, 388–392 (2015).

  13. 13.

    Aleahmad, P., Khajavikhan, M., Christodoulides, D. & LiKamWa, P. Integrated multi-port circulators for unidirectional optical information transport. Sci. Rep. 7, 2129 (2017).

  14. 14.

    Sounas, D. L. & Alù, A. Time-reversal symmetry bounds on the electromagnetic response of asymmetric structures. Phys. Rev. Lett. 118, 154302 (2017).

  15. 15.

    Casimir, H. B. G. On Onsager’s principle of microscopic reversibility. Rev. Mod. Phys. 17, 343–350 (1945).

  16. 16.

    Fleury, R., Sounas, D. L., Sieck, C. F., Haberman, M. R. & Alù, A. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343, 516–519 (2014).

  17. 17.

    Kodera, T., Sounas, D. L. & Caloz, C. Artificial Faraday rotation using a ring metamaterial structure without static magnetic field. Appl. Phys. Lett. 99, 031114 (2011).

  18. 18.

    Kodera, T., Sounas, D. L. & Caloz, C. Magnetless nonreciprocal metamaterial (MNM) technology: application to microwave components. IEEE Trans. Microw. Theory Technol. 61, 1030–1042 (2013).

  19. 19.

    Wang, Z. et al. Gyrotropic response in the absence of a bias field. Proc. Natl Acad. Sci. USA 109, 13194–13197 (2012).

  20. 20.

    Cullen, A. L. A travelling-wave parametric amplifier. Nature 181, 332 (1958).

  21. 21.

    Kamal, A. K. A parametric device as a nonreciprocal element. Proc. IRE 48, 1424–1430 (1960).

  22. 22.

    Anderson, B. D. O. & Newcomb, R. W. On reciprocity and time-variable networks. Proc. IEEE 53, 1674–1674 (1965).

  23. 23.

    Wentz, J. L. A nonreciprocal electrooptic device. Proc. IEEE 54, 96–97 (1966).

  24. 24.

    Brenner, H. E. A unilateral parametric amplifier. IEEE Trans. Microw. Theory Technol 15, 301–306 (1967).

  25. 25.

    Turner, E. H. A nonreciprocal optical device employing birefringent elements with rotating birefringent axes. US patent 3,484,151 (1969).

  26. 26.

    Koch, T. L., Koyama, F. & Liou, K.-Y. Optical modulators as monolithically integrated optical isolators. US patent 5,663,824 (1997).

  27. 27.

    Bhandare, S. et al. Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material. IEEE J. Sel. Top. Quant. Electron 11, 417–421 (2005).

  28. 28.

    Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005).

  29. 29.

    Phare, C. T., Daniel Lee, Y.-H., Cardenas, J. & Lipson, M. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photon. 9, 511–514 (2015).

  30. 30.

    Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nat. Photon. 3, 91–94 (2009).

  31. 31.

    Lira, H., Yu, Z., Fan, S. & Lipson, M. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett. 109, 033901 (2012).

  32. 32.

    Qin, S., Xu, Q. & Wang, Y. E. Nonreciprocal components with distributedly modulated capacitors. IEEE Trans. Microw. Theory Technol. 62, 2260–2272 (2014).

  33. 33.

    Hadad, Y., Soric, J. C. & Alù, A. Breaking temporal symmetries for emission and absorption. Proc. Natl Acad. Sci. USA 113, 3471–3475 (2016).

  34. 34.

    Taravati, S. & Caloz, C. Mixer-duplexer-antenna leaky-wave system based on periodic space–time modulation. IEEE Trans. Antennas Propag. 65, 442–452 (2017).

  35. 35.

    Hadad, Y., Sounas, D. & Alù, A. Space–time gradient metasurfaces. Phys. Rev. B 92, 100304(R) (2015).

  36. 36.

    Shaltout, A., Kildishev, A. & Shalaev, V. Time-varying metasurfaces and Lorentz non-reciprocity. Opt. Mater. Express 5, 2459–2467 (2015).

  37. 37.

    Correas-Serrano, D. et al. Non-reciprocal graphene devices and antennas based on spatio-temporal modulation. IEEE Antenn. Wireless Propag. Lett. 15, 1529–1532 (2015).

  38. 38.

    Yu, Z. & Fan, S. Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions. Appl. Phys. Lett. 94, 171116 (2009).

  39. 39.

    Dong, P. Travelling-wave Mach–Zehnder modulators functioning as optical isolators. Opt. Express 23, 10498–10505 (2015).

  40. 40.

    Wang, D.-W. et al. Optical diode made from a moving photonic crystal. Phys. Rev. Lett. 110, 093901 (2013).

  41. 41.

    Horsley, S. A. R., Wu, J.-H., Artoni, M. & La Rocca, G. C. Optical nonreciprocity of cold atom Bragg mirrors in motion. Phys. Rev. Lett. 110, 223602 (2013).

  42. 42.

    Traitini, G. & Ruzzene, M. Non-reciprocal elastic wave propagation in spatiotemporal periodic structures. New J. Phys. 18, 083047 (2016).

  43. 43.

    Post, E. J. Sagnac effect. Rev. Mod. Phys. 39, 475–493 (1967).

  44. 44.

    Sounas, D. L., Caloz, C. & Alù, A. Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials. Nat. Commun. 4, 2407 (2013).

  45. 45.

    Sounas, D. L. & Alù, A. Angular-momentum-biased nanorings to realize magnetic-free integrated optical isolation. ACS Photon. 1, 198–204 (2014).

  46. 46.

    Estep, N. A., Sounas, D. L., Soric, J. & Alù, A. Magnetic-free nonreciprocity and isolation based on parametrically modulated coupled resonator loops. Nat. Phys. 10, 923–927 (2014).

  47. 47.

    Estep, N. A., Sounas, D. L. & Alù, A. Magnet-less microwave circulators based on spatiotemporally-modulated rings of coupled resonators. IEEE Trans. Microw. Theory Technol. 64, 502–518 (2016).

  48. 48.

    Little, B. E., Chu, S. T., Haus, H. A., Foresi, J. & Laine, J.-P. Microring resonator channel dropping filters. J. Lightwave Technol. 15, 998–1005 (1997).

  49. 49.

    Fleury, R., Sounas, D. L. & Alù, A. Subwavelength ultrasonic circulator based on spatio-temporal modulation. Phys. Rev. B 91, 174306 (2015).

  50. 50.

    Kerckhoff, J., Lalumière, K., Chapman, B. J., Blais, A. & Lehnert, K.W. On-chip superconducting microwave circulator from synthetic rotation. Phys. Rev. Appl 4, 034002 (2015).

  51. 51.

    Fang, K., Yu, Z. & Fan, S. Photonic Aharonov–Bohm effect based on dynamic modulation. Phys. Rev. Lett. 108, 153901 (2012).

  52. 52.

    Tzuang, L. D., Feng, K., Nussenzveig, P., Fan, S. & Lipson, M. Non-reciprocal phase shift induced by an effective magnetic flux for light. Nat. Photon. 8, 701–705 (2014).

  53. 53.

    Li, E., Eggleton, B. J., Fang, K. & Fan, S. Photonic Aharonov–Bohm effect in photon–phonon interactions. Nat. Commun. 5, 3225 (2014).

  54. 54.

    Fang, K., Yu, Z. & Fan, S. Experimental demonstration of a photonic Aharonov–Bohm effect at radio frequencies. Phys. Rev. B 87, 060301 (2013).

  55. 55.

    Doerr, C. R., Chen, L. & Vermeulen, D. Silicon photonics broadband modulation-based isolator. Opt. Express 22, 4493–4498 (2014).

  56. 56.

    Bergeal, N. et al. Phase-preserving amplification near the quantum limit with a Josephson ring modulator. Nature 465, 64–68 (2010).

  57. 57.

    Abdo, B., Sliwa, K., Frunzio, L. & Devoret, M. Directional amplification with a Josephson circuit. Phys. Rev. X 3, 031001 (2013).

  58. 58.

    Sliwa, K. M. et al. Reconfigurable Josephson circulator/directional amplifier. Phys. Rev. X 5, 041020 (2015).

  59. 59.

    Lecocq, F. et al. Nonreciprocal microwave signal processing with a field-programmable Josephson amplifier. Phys. Rev. Appl. 7, 024028 (2017).

  60. 60.

    Kamal, A., Clarke, J. & Devoret, M. H. Noiseless non-reciprocity in a parametric active device. Nat. Phys. 7, 311–315 (2011).

  61. 61.

    Ranzani, L. & Aumentado, J. Graph-based analysis of nonreciprocity in coupled-mode systems. New J. Phys. 17, 023024 (2015).

  62. 62.

    Rayleigh, J. W. On the magnetic rotation of light and the second law of thermodynamics. Nature 64, 577 (1901).

  63. 63.

    Ishimaru, A. Unidirectional waves in anisotropic media and the resolution of the thermodynamic paradox. Technical Report No. 69 (US Air Force, 1962).

  64. 64.

    Barzilai, G. & Gerosa, G. Rectangular waveguides loaded with magnetise ferrite and the so-called thermodynamic paradox. Proc. IEE 113, 285–288 (1966).

  65. 65.

    Reiskarimian, N. & Krishnaswamy, H. Magnetic-free non-reciprocity based on staggered commutation. Nat. Commun. 7, 11217 (2016).

  66. 66.

    Biedka, M. M., Zhu, R., Xu, Q. M. & Wang, Y. E. Ultra-wide band non-reciprocity through sequentially-switched delay lines. Sci. Rep. 7, 40014 (2017).

  67. 67.

    Dinc, T. et al. Synchronized conductivity modulation to realize broadband lossless magnetic-free non-reciprocity. Nat. Commun. 8, 795 (2017).

  68. 68.

    Galland, C., Ding, R., Harris, N. C., Baehr-Jones, T. & Hochberg, M. Broadband on-chip optical non-reciprocity using phase modulators. Opt. Express 21, 14500–14511 (2013).

  69. 69.

    Poulton, C. G. et al. Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides. Opt. Express 20, 2135–2156 (2012).

  70. 70.

    Pant, R. et al. On-chip stimulated Brillouin scattering. Opt. Express 19, 8285–8290 (2011).

  71. 71.

    Haus, H. A. Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, New Jersey, 1984).

  72. 72.

    Kang, M. S., Butsch, A. & Russell, P. S. J. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nat. Photon 5, 549–553 (2011).

  73. 73.

    Eggleton, B. J., Luther-Davies, B. & Richardson, K. Chalcogenide photonics. Nat. Photon. 5, 141–148 (2011).

  74. 74.

    Rakich, P. T. et al. Giant enhancement of stimulated Brillouin scattering in the subwavelength limit. Phys. Rev. X 2, 011008 (2012).

  75. 75.

    Hafezi, M. & Rabl, P. Optomechanically induced non-reciprocity in microring resonators. Opt. Express 20, 7672–7684 (2012).

  76. 76.

    Dong, C.-H. et al. Brillouin-scattering-induced transparency and non-reciprocal light storage. Nat. Commun. 6, 6193 (2015).

  77. 77.

    Kim, J., Kuzyk, M. C., Han, K., Wang, H. & Bahl, G. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys. 11, 275–280 (2015).

  78. 78.

    Shen, Z. et al. Experimental realization of optomechanically induced non-reciprocity. Nat. Photon. 10, 657–661 (2016).

  79. 79.

    Ruesink, F., Miri, M.-A., Alù, A. & Verhagen, E. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun. 7, 13662 (2016).

  80. 80.

    Kim, J. H., Kim, S. & Bahl, G. Complete linear optical isolation at the microscale with ultralow loss. Sci. Rep. 7, 1647 (2017).

  81. 81.

    Miri, M.-A., Ruesink, F., Verhagen, E. & Alù, A. Optical non-reciprocity based on optomechanical coupling. Phys. Rev. Appl. 7, 064014 (2017).

  82. 82.

    Metelmann, A. & Clerk, A. A. Nonreciprocal photon transmission and amplification via reservoir engineering. Phys. Rev. X 5, 021025 (2015).

  83. 83.

    Fang, K. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017).

  84. 84.

    Peterson, G. A. et al. Demonstration of efficient nonreciprocity in a microwave optomechanical circuit. Phys. Rev. X 7, 031001 (2017).

  85. 85.

    Bernier, N. R. et al. Nonreciprocal reconfigurable microwave optomechanical circuit. Nat. Commun. 8, 604(2017).

  86. 86.

    Barzanjeh, S. et al. Mechanical on-chip microwave circulator. Nat. Commun. 8, 953 (2017).

  87. 87.

    Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013).

  88. 88.

    Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6, 782–787 (2012).

  89. 89.

    Roushan, P. et al. Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nat. Phys. 13, 146–151 (2016).

  90. 90.

    Schmidt, M., Kessler, S., Peano, V., Painter, O. & Marquardt, F. Optomechanical creation of magnetic fields for photons on a lattice. Optica 2, 635–641 (2015).

  91. 91.

    Peano, V., Brendel, C., Schmidt, M. & Marquardt, F. Topological phases of sound and light. Phys. Rev. X 5, 031011 (2015).

  92. 92.

    Walter, S. & Marquardt, F. Classical dynamical gauge fields in optomechanics. New J. Phys. 18, 113029 (2016).

  93. 93.

    Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 081406 (2009). (R).

  94. 94.

    Kitagawa, T., Berg, E., Rudner, M. & Demler, E. Topological characterization of periodically driven quantum systems. Phys. Rev. B 82, 235114 (2010).

  95. 95.

    Gu, Z., Fertig, H. A., Arovas, D. P. & Auerbach, A. Floquet spectrum and transport through an irradiated graphene ribbon. Phys. Rev. Lett. 107, 216601 (2011).

  96. 96.

    Fang, K. & Fan, S. Controlling the flow of light using the inhomogeneous effective gauge field that emerges from dynamic modulation. Phys. Rev. Lett. 111, 203901 (2013).

  97. 97.

    Lin, Q. & Fan, S. Light guiding by effective gauge field for photons. Phys. Rev. X 4, 031031 (2014).

  98. 98.

    Fleury, R., Khanikaev, A. B. & Alù, A. Floquet topological insulators for sound. Nat. Commun. 7, 11744 (2016).

  99. 99.

    Miller, D. A. B. Energy consumption in optical modulators for interconnects. Opt. Express 20, A293–A308 (2012).

Download references

Author information

Affiliations

  1. Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, USA

    • Dimitrios L. Sounas
    •  & Andrea Alù

Authors

  1. Search for Dimitrios L. Sounas in:

  2. Search for Andrea Alù in:

Contributions

This work was supported by the National Science Foundation, the Air Force Office of Scientific Research, and the Defense Advanced Research Projects Agency. We thank E. Verhagen for useful comments on an earlier version of the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Andrea Alù.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41566-017-0051-x

Further reading