Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-reciprocal photonics based on time modulation

Abstract

Reciprocity is a fundamental principle in optics, requiring that the response of a transmission channel is symmetric when source and observation points are interchanged. It is of major significance because it poses fundamental constraints on the way we process optical signals. Non-reciprocal devices, which break this symmetry, have become fundamental in photonic systems. Today they require magnetic materials that are bulky, costly and cannot be integrated. This is in stark contrast with most photonic devices, including sources, modulators, switches, waveguides, interconnects and antennas, which may be realized at the nanoscale. Here, we review recent progress and opportunities offered by temporal modulation to break reciprocity, revealing its potential for compact, low-energy, integrated non-reciprocal devices, and discuss the future of this exciting research field.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Non-reciprocal devices based on travelling-wave modulation.
Fig. 2: Non-reciprocal devices based on angular momentum biasing.
Fig. 3: Non-reciprocal devices based on direct photonic transitions.
Fig. 4: Non-reciprocal devices based on optomechanical effects.
Fig. 5: Topological insulators for light.

Similar content being viewed by others

References

  1. Potton, R. J. Reciprocity in optics. Rep. Prog. Phys. 67, 717–754 (2004).

    Article  ADS  Google Scholar 

  2. Jalas, D. et al. What is — and what is not — an optical isolator. Nat. Photon 7, 579–582 (2013).

    Article  ADS  Google Scholar 

  3. Fan, S. et al. Comment on ‘Nonreciprocal light propagation in a silicon photonic circuit’. Science 335, 38–38 (2012).

    Article  Google Scholar 

  4. Dutton, H. J. R. Understanding Optical Communications (Prentice Hall PTR, Upper Saddle River, New Jersey, 1998).

  5. Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).

    Article  ADS  Google Scholar 

  6. Bharadia, D., McMilin, E. & Katti, S. Full duplex radios. ACM SIGCOMM Comp. Commun. Rev. 43, 375–386 (2013).

    Article  Google Scholar 

  7. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon 8, 821–829 (2014).

    Article  ADS  Google Scholar 

  8. Rechtsman, M. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    Article  ADS  Google Scholar 

  9. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. Imaging topological edge states in silicon photonics. Nat. Photon 7, 1001–1005 (2013).

    Article  ADS  Google Scholar 

  10. Adam, J. D. et al. Ferrite devices and materials. IEEE Trans. Microw. Theory Technol. 50, 721–737 (2002).

    Article  ADS  Google Scholar 

  11. Dötsch, H. et al. Applications of magneto-optical waveguides in integrated optics: review. J. Opt. Soc. Am. B 22, 240–253 (2005).

    Article  ADS  Google Scholar 

  12. Shi, Y., Yu, Z. & Fan, S. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photon. 9, 388–392 (2015).

    Article  ADS  Google Scholar 

  13. Aleahmad, P., Khajavikhan, M., Christodoulides, D. & LiKamWa, P. Integrated multi-port circulators for unidirectional optical information transport. Sci. Rep. 7, 2129 (2017).

    Article  ADS  Google Scholar 

  14. Sounas, D. L. & Alù, A. Time-reversal symmetry bounds on the electromagnetic response of asymmetric structures. Phys. Rev. Lett. 118, 154302 (2017).

    Article  ADS  Google Scholar 

  15. Casimir, H. B. G. On Onsager’s principle of microscopic reversibility. Rev. Mod. Phys. 17, 343–350 (1945).

    Article  ADS  Google Scholar 

  16. Fleury, R., Sounas, D. L., Sieck, C. F., Haberman, M. R. & Alù, A. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343, 516–519 (2014).

    Article  ADS  Google Scholar 

  17. Kodera, T., Sounas, D. L. & Caloz, C. Artificial Faraday rotation using a ring metamaterial structure without static magnetic field. Appl. Phys. Lett. 99, 031114 (2011).

    Article  ADS  Google Scholar 

  18. Kodera, T., Sounas, D. L. & Caloz, C. Magnetless nonreciprocal metamaterial (MNM) technology: application to microwave components. IEEE Trans. Microw. Theory Technol. 61, 1030–1042 (2013).

    Article  ADS  Google Scholar 

  19. Wang, Z. et al. Gyrotropic response in the absence of a bias field. Proc. Natl Acad. Sci. USA 109, 13194–13197 (2012).

    Article  ADS  Google Scholar 

  20. Cullen, A. L. A travelling-wave parametric amplifier. Nature 181, 332 (1958).

    Article  ADS  Google Scholar 

  21. Kamal, A. K. A parametric device as a nonreciprocal element. Proc. IRE 48, 1424–1430 (1960).

    Article  Google Scholar 

  22. Anderson, B. D. O. & Newcomb, R. W. On reciprocity and time-variable networks. Proc. IEEE 53, 1674–1674 (1965).

    Article  Google Scholar 

  23. Wentz, J. L. A nonreciprocal electrooptic device. Proc. IEEE 54, 96–97 (1966).

    Article  Google Scholar 

  24. Brenner, H. E. A unilateral parametric amplifier. IEEE Trans. Microw. Theory Technol 15, 301–306 (1967).

    Article  ADS  Google Scholar 

  25. Turner, E. H. A nonreciprocal optical device employing birefringent elements with rotating birefringent axes. US patent 3,484,151 (1969).

    Google Scholar 

  26. Koch, T. L., Koyama, F. & Liou, K.-Y. Optical modulators as monolithically integrated optical isolators. US patent 5,663,824 (1997).

    Google Scholar 

  27. Bhandare, S. et al. Novel nonmagnetic 30-dB traveling-wave single-sideband optical isolator integrated in III/V material. IEEE J. Sel. Top. Quant. Electron 11, 417–421 (2005).

    Article  Google Scholar 

  28. Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005).

    Article  ADS  Google Scholar 

  29. Phare, C. T., Daniel Lee, Y.-H., Cardenas, J. & Lipson, M. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photon. 9, 511–514 (2015).

    Article  ADS  Google Scholar 

  30. Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nat. Photon. 3, 91–94 (2009).

    Article  ADS  Google Scholar 

  31. Lira, H., Yu, Z., Fan, S. & Lipson, M. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett. 109, 033901 (2012).

    Article  ADS  Google Scholar 

  32. Qin, S., Xu, Q. & Wang, Y. E. Nonreciprocal components with distributedly modulated capacitors. IEEE Trans. Microw. Theory Technol. 62, 2260–2272 (2014).

    Article  ADS  Google Scholar 

  33. Hadad, Y., Soric, J. C. & Alù, A. Breaking temporal symmetries for emission and absorption. Proc. Natl Acad. Sci. USA 113, 3471–3475 (2016).

    Article  ADS  Google Scholar 

  34. Taravati, S. & Caloz, C. Mixer-duplexer-antenna leaky-wave system based on periodic space–time modulation. IEEE Trans. Antennas Propag. 65, 442–452 (2017).

    Article  ADS  Google Scholar 

  35. Hadad, Y., Sounas, D. & Alù, A. Space–time gradient metasurfaces. Phys. Rev. B 92, 100304(R) (2015).

    Article  ADS  Google Scholar 

  36. Shaltout, A., Kildishev, A. & Shalaev, V. Time-varying metasurfaces and Lorentz non-reciprocity. Opt. Mater. Express 5, 2459–2467 (2015).

    Article  Google Scholar 

  37. Correas-Serrano, D. et al. Non-reciprocal graphene devices and antennas based on spatio-temporal modulation. IEEE Antenn. Wireless Propag. Lett. 15, 1529–1532 (2015).

    Article  ADS  Google Scholar 

  38. Yu, Z. & Fan, S. Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions. Appl. Phys. Lett. 94, 171116 (2009).

    Article  ADS  Google Scholar 

  39. Dong, P. Travelling-wave Mach–Zehnder modulators functioning as optical isolators. Opt. Express 23, 10498–10505 (2015).

    Article  ADS  Google Scholar 

  40. Wang, D.-W. et al. Optical diode made from a moving photonic crystal. Phys. Rev. Lett. 110, 093901 (2013).

    Article  ADS  Google Scholar 

  41. Horsley, S. A. R., Wu, J.-H., Artoni, M. & La Rocca, G. C. Optical nonreciprocity of cold atom Bragg mirrors in motion. Phys. Rev. Lett. 110, 223602 (2013).

    Article  ADS  Google Scholar 

  42. Traitini, G. & Ruzzene, M. Non-reciprocal elastic wave propagation in spatiotemporal periodic structures. New J. Phys. 18, 083047 (2016).

    Article  ADS  Google Scholar 

  43. Post, E. J. Sagnac effect. Rev. Mod. Phys. 39, 475–493 (1967).

    Article  ADS  Google Scholar 

  44. Sounas, D. L., Caloz, C. & Alù, A. Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials. Nat. Commun. 4, 2407 (2013).

    Article  ADS  Google Scholar 

  45. Sounas, D. L. & Alù, A. Angular-momentum-biased nanorings to realize magnetic-free integrated optical isolation. ACS Photon. 1, 198–204 (2014).

    Article  Google Scholar 

  46. Estep, N. A., Sounas, D. L., Soric, J. & Alù, A. Magnetic-free nonreciprocity and isolation based on parametrically modulated coupled resonator loops. Nat. Phys. 10, 923–927 (2014).

    Article  Google Scholar 

  47. Estep, N. A., Sounas, D. L. & Alù, A. Magnet-less microwave circulators based on spatiotemporally-modulated rings of coupled resonators. IEEE Trans. Microw. Theory Technol. 64, 502–518 (2016).

    Google Scholar 

  48. Little, B. E., Chu, S. T., Haus, H. A., Foresi, J. & Laine, J.-P. Microring resonator channel dropping filters. J. Lightwave Technol. 15, 998–1005 (1997).

    Article  ADS  Google Scholar 

  49. Fleury, R., Sounas, D. L. & Alù, A. Subwavelength ultrasonic circulator based on spatio-temporal modulation. Phys. Rev. B 91, 174306 (2015).

    Article  ADS  Google Scholar 

  50. Kerckhoff, J., Lalumière, K., Chapman, B. J., Blais, A. & Lehnert, K.W. On-chip superconducting microwave circulator from synthetic rotation. Phys. Rev. Appl 4, 034002 (2015).

    Article  ADS  Google Scholar 

  51. Fang, K., Yu, Z. & Fan, S. Photonic Aharonov–Bohm effect based on dynamic modulation. Phys. Rev. Lett. 108, 153901 (2012).

    Article  ADS  Google Scholar 

  52. Tzuang, L. D., Feng, K., Nussenzveig, P., Fan, S. & Lipson, M. Non-reciprocal phase shift induced by an effective magnetic flux for light. Nat. Photon. 8, 701–705 (2014).

    Article  ADS  Google Scholar 

  53. Li, E., Eggleton, B. J., Fang, K. & Fan, S. Photonic Aharonov–Bohm effect in photon–phonon interactions. Nat. Commun. 5, 3225 (2014).

    ADS  Google Scholar 

  54. Fang, K., Yu, Z. & Fan, S. Experimental demonstration of a photonic Aharonov–Bohm effect at radio frequencies. Phys. Rev. B 87, 060301 (2013).

    Article  ADS  Google Scholar 

  55. Doerr, C. R., Chen, L. & Vermeulen, D. Silicon photonics broadband modulation-based isolator. Opt. Express 22, 4493–4498 (2014).

    Article  ADS  Google Scholar 

  56. Bergeal, N. et al. Phase-preserving amplification near the quantum limit with a Josephson ring modulator. Nature 465, 64–68 (2010).

    Article  ADS  Google Scholar 

  57. Abdo, B., Sliwa, K., Frunzio, L. & Devoret, M. Directional amplification with a Josephson circuit. Phys. Rev. X 3, 031001 (2013).

    Google Scholar 

  58. Sliwa, K. M. et al. Reconfigurable Josephson circulator/directional amplifier. Phys. Rev. X 5, 041020 (2015).

    Google Scholar 

  59. Lecocq, F. et al. Nonreciprocal microwave signal processing with a field-programmable Josephson amplifier. Phys. Rev. Appl. 7, 024028 (2017).

    Article  ADS  Google Scholar 

  60. Kamal, A., Clarke, J. & Devoret, M. H. Noiseless non-reciprocity in a parametric active device. Nat. Phys. 7, 311–315 (2011).

    Article  Google Scholar 

  61. Ranzani, L. & Aumentado, J. Graph-based analysis of nonreciprocity in coupled-mode systems. New J. Phys. 17, 023024 (2015).

    Article  ADS  Google Scholar 

  62. Rayleigh, J. W. On the magnetic rotation of light and the second law of thermodynamics. Nature 64, 577 (1901).

    Article  MATH  Google Scholar 

  63. Ishimaru, A. Unidirectional waves in anisotropic media and the resolution of the thermodynamic paradox. Technical Report No. 69 (US Air Force, 1962).

  64. Barzilai, G. & Gerosa, G. Rectangular waveguides loaded with magnetise ferrite and the so-called thermodynamic paradox. Proc. IEE 113, 285–288 (1966).

    Google Scholar 

  65. Reiskarimian, N. & Krishnaswamy, H. Magnetic-free non-reciprocity based on staggered commutation. Nat. Commun. 7, 11217 (2016).

    Article  ADS  Google Scholar 

  66. Biedka, M. M., Zhu, R., Xu, Q. M. & Wang, Y. E. Ultra-wide band non-reciprocity through sequentially-switched delay lines. Sci. Rep. 7, 40014 (2017).

    Article  ADS  Google Scholar 

  67. Dinc, T. et al. Synchronized conductivity modulation to realize broadband lossless magnetic-free non-reciprocity. Nat. Commun. 8, 795 (2017).

    Article  Google Scholar 

  68. Galland, C., Ding, R., Harris, N. C., Baehr-Jones, T. & Hochberg, M. Broadband on-chip optical non-reciprocity using phase modulators. Opt. Express 21, 14500–14511 (2013).

    Article  ADS  Google Scholar 

  69. Poulton, C. G. et al. Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides. Opt. Express 20, 2135–2156 (2012).

    Article  Google Scholar 

  70. Pant, R. et al. On-chip stimulated Brillouin scattering. Opt. Express 19, 8285–8290 (2011).

    Article  ADS  Google Scholar 

  71. Haus, H. A. Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, New Jersey, 1984).

  72. Kang, M. S., Butsch, A. & Russell, P. S. J. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nat. Photon 5, 549–553 (2011).

    Article  ADS  Google Scholar 

  73. Eggleton, B. J., Luther-Davies, B. & Richardson, K. Chalcogenide photonics. Nat. Photon. 5, 141–148 (2011).

    ADS  Google Scholar 

  74. Rakich, P. T. et al. Giant enhancement of stimulated Brillouin scattering in the subwavelength limit. Phys. Rev. X 2, 011008 (2012).

    Google Scholar 

  75. Hafezi, M. & Rabl, P. Optomechanically induced non-reciprocity in microring resonators. Opt. Express 20, 7672–7684 (2012).

    Article  ADS  Google Scholar 

  76. Dong, C.-H. et al. Brillouin-scattering-induced transparency and non-reciprocal light storage. Nat. Commun. 6, 6193 (2015).

    Article  Google Scholar 

  77. Kim, J., Kuzyk, M. C., Han, K., Wang, H. & Bahl, G. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys. 11, 275–280 (2015).

    Article  Google Scholar 

  78. Shen, Z. et al. Experimental realization of optomechanically induced non-reciprocity. Nat. Photon. 10, 657–661 (2016).

    Article  ADS  Google Scholar 

  79. Ruesink, F., Miri, M.-A., Alù, A. & Verhagen, E. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun. 7, 13662 (2016).

    Article  ADS  Google Scholar 

  80. Kim, J. H., Kim, S. & Bahl, G. Complete linear optical isolation at the microscale with ultralow loss. Sci. Rep. 7, 1647 (2017).

    Article  ADS  Google Scholar 

  81. Miri, M.-A., Ruesink, F., Verhagen, E. & Alù, A. Optical non-reciprocity based on optomechanical coupling. Phys. Rev. Appl. 7, 064014 (2017).

    Article  ADS  Google Scholar 

  82. Metelmann, A. & Clerk, A. A. Nonreciprocal photon transmission and amplification via reservoir engineering. Phys. Rev. X 5, 021025 (2015).

    Google Scholar 

  83. Fang, K. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017).

    Article  Google Scholar 

  84. Peterson, G. A. et al. Demonstration of efficient nonreciprocity in a microwave optomechanical circuit. Phys. Rev. X 7, 031001 (2017).

  85. Bernier, N. R. et al. Nonreciprocal reconfigurable microwave optomechanical circuit. Nat. Commun. 8, 604(2017).

  86. Barzanjeh, S. et al. Mechanical on-chip microwave circulator. Nat. Commun. 8, 953 (2017).

  87. Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013).

    Article  ADS  Google Scholar 

  88. Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6, 782–787 (2012).

    Article  ADS  Google Scholar 

  89. Roushan, P. et al. Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nat. Phys. 13, 146–151 (2016).

    Article  MathSciNet  Google Scholar 

  90. Schmidt, M., Kessler, S., Peano, V., Painter, O. & Marquardt, F. Optomechanical creation of magnetic fields for photons on a lattice. Optica 2, 635–641 (2015).

    Article  Google Scholar 

  91. Peano, V., Brendel, C., Schmidt, M. & Marquardt, F. Topological phases of sound and light. Phys. Rev. X 5, 031011 (2015).

    Google Scholar 

  92. Walter, S. & Marquardt, F. Classical dynamical gauge fields in optomechanics. New J. Phys. 18, 113029 (2016).

    Article  ADS  Google Scholar 

  93. Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 081406 (2009). (R).

    Article  ADS  Google Scholar 

  94. Kitagawa, T., Berg, E., Rudner, M. & Demler, E. Topological characterization of periodically driven quantum systems. Phys. Rev. B 82, 235114 (2010).

    Article  ADS  Google Scholar 

  95. Gu, Z., Fertig, H. A., Arovas, D. P. & Auerbach, A. Floquet spectrum and transport through an irradiated graphene ribbon. Phys. Rev. Lett. 107, 216601 (2011).

    Article  ADS  Google Scholar 

  96. Fang, K. & Fan, S. Controlling the flow of light using the inhomogeneous effective gauge field that emerges from dynamic modulation. Phys. Rev. Lett. 111, 203901 (2013).

    Article  ADS  Google Scholar 

  97. Lin, Q. & Fan, S. Light guiding by effective gauge field for photons. Phys. Rev. X 4, 031031 (2014).

    Google Scholar 

  98. Fleury, R., Khanikaev, A. B. & Alù, A. Floquet topological insulators for sound. Nat. Commun. 7, 11744 (2016).

    Article  ADS  Google Scholar 

  99. Miller, D. A. B. Energy consumption in optical modulators for interconnects. Opt. Express 20, A293–A308 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

This work was supported by the National Science Foundation, the Air Force Office of Scientific Research, and the Defense Advanced Research Projects Agency. We thank E. Verhagen for useful comments on an earlier version of the manuscript.

Corresponding author

Correspondence to Andrea Alù.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sounas, D.L., Alù, A. Non-reciprocal photonics based on time modulation. Nature Photon 11, 774–783 (2017). https://doi.org/10.1038/s41566-017-0051-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-017-0051-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing