Abstract
Distributed quantum computation in a quantum network1,2,3 is based on the idea that qubits can be preserved and efficiently exchanged between long-lived, stationary network nodes via photonic links4. Although long qubit lifetimes have been observed5,6,7,8,9,10, and non-qubit excitations have been memorized11,12,13,14, the long-lived storage and efficient retrieval of a photonic qubit by means of a light–matter interface15,16,17,18,19,20 remains an outstanding challenge. Here, we report on a qubit memory based on a single atom coupled to a high-finesse optical resonator. By mapping the qubit between an interface basis with strong light–matter coupling and a memory basis with low decoherence, we achieve a coherence time exceeding 100 ms with a time-independent storage-and-retrieval efficiency of 22%. The former constitutes an improvement by two orders of magnitude21,22 and thus implements an efficient photonic qubit memory with a coherence time that exceeds the lower bound needed for direct qubit teleportation in a global quantum internet.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Entangling single atoms over 33 km telecom fibre
Nature Open Access 06 July 2022
-
Nondestructive detection of photonic qubits
Nature Open Access 24 March 2021
-
A network-ready random-access qubits memory
npj Quantum Information Open Access 15 October 2020
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).
Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).
Razavi, M., Piani, M. & Lütkenhaus, N. Quantum repeaters with imperfect memories: Cost and scalability. Phys. Rev. A 80, 032301 (2009).
DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).
Langer, C. et al. Long-lived qubit memory using atomic ions. Phys. Rev. Lett. 95, 060502 (2005).
Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).
Steger, M. et al. Quantum information storage for over 180 s using donor spins in a 28Si “semiconductor vacuum”. Science 336, 1280–1283 (2012).
Bar-Gill, N., Pham, L. M., Jarmola, A., Budker, D. & Walsworth, R. L. Solid-state electronic spin coherence time approaching one second. Nat. Commun. 4, 1743 (2013).
Zhong, M. et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).
Yang, J. et al. Coherence preservation of a single neutral atom qubit transferred between magic-intensity optical traps. Phys. Rev. Lett. 117, 123201 (2016).
Zhao, B. et al. A millisecond quantum memory for scalable quantum networks. Nat. Phys. 5, 95–99 (2009).
Radnaev, A. G. et al. A quantum memory with telecom-wavelength conversion. Nat. Phys. 6, 894–899 (2010).
Bao, X.-H. et al. Efficient and long-lived quantum memory with cold atoms inside a ring cavity. Nat. Phys. 8, 517–521 (2012).
Yang, S.-J., Wang, X.-J., Bao, X.-H. & Pan, J.-W. An efficient quantum light–matter interface with sub-second lifetime. Nat. Photon. 10, 381–384 (2016).
Julsgaard, B., Sherson, J., Cirac, J. I., Fiurášek, J. & Polzik, E. S. Experimental demonstration of quantum memory for light. Nature 432, 482–486 (2004).
Choi, K. S., Deng, H., Laurat, J. & Kimble, H. J. Mapping photonic entanglement into and out of a quantum memory. Nature 452, 67–71 (2008).
Clausen, C., Bussières, F., Afzelius, M. & Gisin, N. Quantum storage of heralded polarization qubits in birefringent and anisotropically absorbing materials. Phys. Rev. Lett. 108, 190503 (2012).
Sprague, M. R. et al. Broadband single-photon-level memory in a hollow-core photonic crystal fibre. Nat. Photon. 8, 287–291 (2014).
Gouraud, B., Maxein, D., Nicolas, A., Morin, O. & Laurat, J. Demonstration of a memory for tightly guided light in an optical nanofiber. Phys. Rev. Lett. 114, 180503 (2015).
Sayrin, C., Clausen, C., Albrecht, B., Schneeweiss, P. & Rauschenbeutel, A. Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms. Optica 2, 353–356 (2015).
Riedl, S. et al. Bose-Einstein condensate as a quantum memory for a photonic polarisation qubit. Phys. Rev. A 85, 022318 (2012).
Xu, Z. et al. Long lifetime and high-fidelity quantum memory of photonic polarisation qubit by lifting Zeeman degeneracy. Phys. Rev. Lett. 111, 240503 (2013).
Munro, W. J. et al. Quantum communication without the necessity of quantum memories. Nat. Photon. 6, 777–781 (2012).
Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).
Treutlein, P., Hommelhoff, P., Steinmetz, T., Hänsch, T. W. & Reichel, J. Coherence in microchip traps. Phys. Rev. Lett. 92, 203005 (2004).
Specht, H. P. et al. A single-atom quantum memory. Nature 473, 190–193 (2011).
Ruster, T. et al. A long-lived Zeeman trapped-ion qubit. Appl. Phys. B 112, 254 (2016).
Neuzner, A., Körber, M., Morin, O., Ritter, S. & Rempe, G. Interference and dynamics of light from a distance-controlled atom pair in an optical cavity. Nat. Photon. 10, 303–306 (2016).
Boozer, A. D., Boca, A., Miller, R., Northup, T. E. & Kimble, H. J. Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity. Phys. Rev. Lett. 97, 083602 (2006).
Reiserer, A., Nölleke, C., Ritter, S. & Rempe, G. Ground-state cooling of a single atom at the center of an optical cavity. Phys. Rev. Lett. 110, 223003 (2013).
Dilley, J., Nisbet-Jones, P., Shore, B. W. & Kuhn, A. Single-photon absorption in coupled atom-cavity systems. Phys. Rev. A 85, 023834 (2012).
Uphoff, M., Brekenfeld, M., Rempe, G. & Ritter, S. An integrated quantum repeater at telecom wavelength with single atoms in optical fiber cavities. Appl. Phys. B 122, 46 (2016).
Acknowledgements
We thank B. Wang for the development of the hardware and S. Dürr, L. Li and M. Uphoff for discussion. This work was supported by the Bundesministerium für Bildung und Forschung via the Verbund Q.comand by the Deutsche Forschungsgemeinschaft via the excellence cluster Nanosystems Initiative Munich (NIM).
Author information
Authors and Affiliations
Contributions
M.K., O.M., A.N., S.R. and G.R. conceived the experiment. M.K., O.M. and S.L. performed the experiment. M.K., O.M., S.L., S.R. and G.R. evaluated the data. All authors contributed to the writing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary text
Rights and permissions
About this article
Cite this article
Körber, M., Morin, O., Langenfeld, S. et al. Decoherence-protected memory for a single-photon qubit. Nature Photon 12, 18–21 (2018). https://doi.org/10.1038/s41566-017-0050-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-017-0050-y
This article is cited by
-
Entangling single atoms over 33 km telecom fibre
Nature (2022)
-
Quantum memories entangled over tens of kilometres of optical fibre
Nature (2022)
-
Nondestructive detection of photonic qubits
Nature (2021)
-
A network-ready random-access qubits memory
npj Quantum Information (2020)
-
A quantum network node with crossed optical fibre cavities
Nature Physics (2020)