Article | Published:

Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy

Nature Photonicsvolume 11pages793797 (2017) | Download Citation

Abstract

Ultrafast electron and X-ray imaging and spectroscopy are the basis for an ongoing revolution in the understanding of dynamical atomic-scale processes in matter. The underlying technology relies heavily on laser science for the generation and characterization of ever shorter pulses. Recent findings suggest that ultrafast electron microscopy with attosecond-structured wavefunctions may be feasible. However, such future technologies call for means to both prepare and fully analyse the corresponding free-electron quantum states. Here, we introduce a framework for the preparation, coherent manipulation and characterization of free-electron quantum states, experimentally demonstrating attosecond electron pulse trains. Phase-locked optical fields coherently control the electron wavefunction along the beam direction. We establish a new variant of quantum state tomography—‘SQUIRRELS’—for free-electron ensembles. The ability to tailor and quantitatively map electron quantum states will promote the nanoscale study of electron–matter entanglement and new forms of ultrafast electron microscopy down to the attosecond regime.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Gustafsson, M. G. L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000).

  2. 2.

    Weiner, A. M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000).

  3. 3.

    Mukamel, S. Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations. Annu. Rev. Phys. Chem. 51, 691–729 (2000).

  4. 4.

    Kira, M., Koch, S. W., Smith, R. P., Hunter, A. E. & Cundiff, S. T. Quantum spectroscopy with Schrödinger-cat states. Nat. Phys. 7, 799–804 (2011).

  5. 5.

    Guzzinati, G. et al. Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams. Nat. Commun. 8, 14999 (2017).

  6. 6.

    McMorran, B. J. et al. Electron vortex beams with high quanta of orbital angular momentum. Science 331, 192–195 (2011).

  7. 7.

    Verbeeck, J., Tian, H. & Schattschneider, P. Production and application of electron vortex beams. Nature 467, 301–304 (2010).

  8. 8.

    Echternkamp, K. E., Feist, A., Schäfer, S. & Ropers, C. Ramsey-type phase control of free-electron beams. Nat. Phys. 12, 1000–1004 (2016).

  9. 9.

    Kruit, P. et al. Designs for a quantum electron microscope. Ultramicroscopy 164, 31–45 (2016).

  10. 10.

    Bressler, C. & Chergui, M. Ultrafast X-ray absorption spectroscopy. Chem. Rev. 104, 1781–1812 (2004).

  11. 11.

    Wernet, P. et al. Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)5 in solution. Nature 520, 78–81 (2015).

  12. 12.

    Beaud, P. et al. A time-dependent order parameter for ultrafast photoinduced phase transitions. Nat. Mater. 13, 923–927 (2014).

  13. 13.

    Miller, R. J. D. Femtosecond crystallography with ultrabright electrons and X-rays: capturing chemistry in action. Science 343, 1108–1116 (2014).

  14. 14.

    Kealhofer, C. et al. All-optical control and metrology of electron pulses. Science 352, 429–433 (2016).

  15. 15.

    Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

  16. 16.

    Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

  17. 17.

    Grguraš, I. et al. Ultrafast X-ray pulse characterization at free-electron lasers. Nat. Photon. 6, 852–857 (2012).

  18. 18.

    Chapman, H. N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77 (2011).

  19. 19.

    Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012).

  20. 20.

    Silva, F., Teichmann, S. M., Cousin, S. L., Hemmer, M. & Biegert, J. Spatiotemporal isolation of attosecond soft X-ray pulses in the water window. Nat. Commun. 6, 6611 (2015).

  21. 21.

    Maxson, J. et al. Direct measurement of sub-10 fs relativistic electron beams with ultralow emittance. Phys. Rev. Lett. 118, 154802 (2017).

  22. 22.

    Chatelain, R. P., Morrison, V. R., Godbout, C. & Siwick, B. J. Ultrafast electron diffraction with radio-frequency compressed electron pulses. Appl. Phys. Lett. 101, 081901 (2012).

  23. 23.

    Gliserin, A., Walbran, M., Krausz, F. & Baum, P. Sub-phonon-period compression of electron pulses for atomic diffraction. Nat. Commun. 6, 8723 (2015).

  24. 24.

    van Oudheusden, T. et al. Compression of subrelativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction. Phys. Rev. Lett. 105, 264801 (2010).

  25. 25.

    Wimmer, L. et al. Terahertz control of nanotip photoemission. Nat. Phys. 10, 432–436 (2014).

  26. 26.

    Feist, A. et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature 521, 200–203 (2015).

  27. 27.

    Kozak, M. et al. Optical gating and streaking of free electrons with sub-optical cycle precision. Nat. Commun. 8, 14342 (2017).

  28. 28.

    Zewail, A. H. Four-dimensional electron microscopy. Science 328, 187–193 (2010).

  29. 29.

    Flannigan, D. J. & Zewail, A. H. 4D electron microscopy: principles and applications. Acc. Chem. Res. 45, 1828–1839 (2012).

  30. 30.

    Weathersby, S. P. et al. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory. Rev. Sci. Instrum. 86, 073702 (2015).

  31. 31.

    Feist, A. et al. Ultrafast transmission electron microscopy using a laser-driven field emitter: femtosecond resolution with a high coherence electron beam. Ultramicroscopy 176, 63–73 (2017).

  32. 32.

    Baum, P. & Zewail, A. H. Attosecond electron pulses for 4D diffraction and microscopy. Proc. Natl Acad. Sci. USA 104, 18409–18414 (2007).

  33. 33.

    Hilbert, S. A., Uiterwaal, C. J., Barwick, B., Batelaan, H. & Zewail, A. H. Temporal lenses for attosecond and femtosecond electron pulses. Proc. Natl Acad. Sci. USA 106, 10558–10563 (2009).

  34. 34.

    Hassan, M. T., Baskin, J. S., Liao, B. & Zewail, A. H. High-temporal-resolution electron microscopy for imaging ultrafast electron dynamics. Nat. Photon. 11, 425–430 (2017).

  35. 35.

    Barwick, B., Flannigan, D. J. & Zewail, A. H. Photon-induced near-field electron microscopy. Nature 462, 902–906 (2009).

  36. 36.

    Park, S. T., Lin, M. & Zewail, A. H. Photon-induced near-field electron microscopy (PINEM): theoretical and experimental. New J. Phys. 12, 123028 (2010).

  37. 37.

    García de Abajo, F. J., Asenjo-Garcia, A. & Kociak, M. Multiphoton absorption and emission by interaction of swift electrons with evanescent light fields. Nano Lett. 10, 1859–1863 (2010).

  38. 38.

    Piazza, L. et al. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field. Nat. Commun. 6, 6407 (2015).

  39. 39.

    García de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).

  40. 40.

    Wollenhaupt, M., Bayer, T. & Baumert, T. in Ultrafast Dynamics Driven by Intense Light Pulses (eds Kitzler, M. & Gräfe, S.) 63–122 (Springer, Switzerland, 2016).

  41. 41.

    Paris, M. & Řeháček, J. (eds) Quantum State Estimation (Springer, Berlin, 2004).

  42. 42.

    Schleich, W. P. Quantum Optics in Phase Space (Wiley-VCH, Hoboken, NJ, 2015).

  43. 43.

    Trebino, R. Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer, Berlin, 2000).

  44. 44.

    Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

  45. 45.

    Wigner, E. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932).

  46. 46.

    Nogues, G. et al. Measurement of a negative value for the Wigner function of radiation. Phys. Rev. A 62, 54101 (2000).

  47. 47.

    Hemsing, E. et al. Echo-enabled harmonics up to the 75th order from precisely tailored electron beams. Nat. Photon. 10, 512–515 (2016).

  48. 48.

    Sears, C. M. S. et al. Production and characterization of attosecond electron bunch trains. Phys. Rev. ST Accel. Beams 11, 061301 (2008).

  49. 49.

    Diosi, L. A Short Course in Quantum Information Theory: An Approach From Theoretical Physics (Springer, Berlin, 2011).

  50. 50.

    Engl, H. W., Hanke, M. & Neubauer, A. Regularization of Inverse Problems (Kluwer Academic, Dorcrecht, 2000).

  51. 51.

    Kaipio, J. P. & Somersalo, E. Statistical and Computational Inverse Problems (Springer-Verlag, New York, 2005).

  52. 52.

    Vandenberghe, L. & Boyd, S. Semidefinite Programming. SIAM Rev. 38, 49–95 (1996).

  53. 53.

    Rockafellar, R. T. Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976).

  54. 54.

    Toh, K. C., Tütüncü, R. H. & Todd, M. J. Inexact primal-dual path-following algorithms for a special class of convex quadratic SDP and related problems. Pac. J. Optim. 3, 135–164 (2007).

  55. 55.

    Toh, K. C., Todd, M. J. & Tütüncü, R. H. SDPT3—a Matlab software package for semidefinite programming, Version 1.3. Optim. Method. Softw. 11, 545–581 (1999).

  56. 56.

    Bourassin-Bouchet, C. & Couprie, M.-E. Partially coherent ultrafast spectrography. Nat. Commun. 6, 6465 (2015).

Download references

Acknowledgements

The authors acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG) (Schwerpunktprogramm (SPP) 1840 ‘Quantum Dynamics in Tailored Intense Fields’, Sonderforschungsbereich (SFB) 1073 ‘Atomic Scale Control of Energy Conversion’, project A05, and SFB 755 ‘Nanoscale Photonic Imaging’, projects C08 and C09), support by the Lower Saxony Ministry of Science and Culture, and funding of the instrumentation by the DFG and VolkswagenStiftung. The authors thank O. Kfir for discussions. T.H. thanks A. Fischer (Göttingen) and K.-C. Toh (Singapore) for discussions on semidefinite programming.

Author information

Affiliations

  1. 4th Physical Institute – Solids and Nanostructures, University of Göttingen, Göttingen, Germany

    • Katharina E. Priebe
    • , Christopher Rathje
    • , Sergey V. Yalunin
    • , Armin Feist
    • , Sascha Schäfer
    •  & Claus Ropers
  2. Institut für Numerische und Angewandte Mathematik, University of Göttingen, Göttingen, Germany

    • Thorsten Hohage
  3. International Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, Göttingen, Germany

    • Claus Ropers

Authors

  1. Search for Katharina E. Priebe in:

  2. Search for Christopher Rathje in:

  3. Search for Sergey V. Yalunin in:

  4. Search for Thorsten Hohage in:

  5. Search for Armin Feist in:

  6. Search for Sascha Schäfer in:

  7. Search for Claus Ropers in:

Contributions

K.E.P. built the two-colour interferometer set-up, conducted the two-colour experiments with contributions from A.F., analysed the data, and tested the reconstruction algorithm. Ch.R. conducted measurements of the attosecond pulse trains and analysed the data, both with contributions from K.E.P. S.V.Y. and Cl.R. devised the quantum state reconstruction scheme, which was implemented by S.V.Y. The reconstruction algorithm using regularization and semidefinite programming (SDP) was developed by T.H. with contributions from S.V.Y. The manuscript was written by K.E.P. and Cl.R., with contributions from all authors. Cl.R. and S.S. conceived and directed the study. All authors discussed the results and the interpretation.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Claus Ropers.

Electronic supplementary material

  1. Supplementary Information

    Supplementary Figures 1–7.

  2. Experiment code

    Code for the SQUIRRELS algorithm used to reconstruct the free-electron density matrix.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41566-017-0045-8

Further reading