Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Towards a global quantum network

The creation of a global quantum network is now a realistic proposition thanks to developments in satellite and fibre links and quantum memory. Applications will range from secure communication and fundamental physics experiments to a future quantum internet.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quantum repeater architecture with satellite links.

References

  1. Barz, S. et al. Science 335, 303–308 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  2. Jakobi, M. et al. Phys. Rev. A 83, 022301 (2011).

    Article  ADS  Google Scholar 

  3. Komar, P. et al. Nat. Phys. 10, 582–587 (2014).

    Article  Google Scholar 

  4. Gottesman, D., Jennewein, T. & Croke, S. Phys. Rev. Lett. 109, 070503 (2012).

    Article  ADS  Google Scholar 

  5. Rideout, D. et al. Class. Quant. Grav. 29, 224011 (2012).

    Article  ADS  Google Scholar 

  6. Korzh, B. et al. Nat. Photon. 9, 163–68 (2015).

    Article  ADS  Google Scholar 

  7. Ursin, R. et al. Nat. Phys. 3, 481–486 (2007).

    Article  Google Scholar 

  8. Corning SMF-28 Ultra Optical Fiber: Product Information (Corning Incorporated, Corning, NY, 2014); https://www.corning.com/media/worldwide/coc/documents/Fiber/SMF-28%20Ultra.pdf

  9. Ortigoso, J. Preprint at https://arxiv.org/abs/1707.06910 (2017).

  10. Makovejs, S. et al. In Optical Fiber Communication Conference paper Th5A.2 (Optical Society of America, 2015).

  11. Roberts, P.  J. et al. Opt. Express 13, 236–244 (2005).

    Article  ADS  Google Scholar 

  12. Saad, M. Proc. SPIE 8307, 83070N (2011).

    Article  ADS  Google Scholar 

  13. Sangouard, N., Simon, C., De Riedmatten, H. & Gisin, N. Rev. Mod. Phys. 83, 33–80 (2011).

    Article  ADS  Google Scholar 

  14. Muralidharan, S. et al. Sci. Rep. 6, 20463 (2016).

    Article  ADS  Google Scholar 

  15. Ritter, S. et al. Nature 484, 195–200 (2012).

    Article  ADS  Google Scholar 

  16. Monroe, C. et al. Phys. Rev. A 89, 022317 (2014).

    Article  ADS  Google Scholar 

  17. Hensen, B. et al. Nature 526, 682–686 (2015).

    Article  ADS  Google Scholar 

  18. Yang, S.-J., Wang, X.-J., Bao, X.-H. & Pan, J.-W. Nat. Photon. 10, 381–384 (2016).

    Article  ADS  Google Scholar 

  19. Hedges, M.  P., Longdell, J.  J., Li, Y. & Sellars, M.  J. Nature 465, 1052–1056 (2010).

    Article  ADS  Google Scholar 

  20. Zhong, M. et al. Nature 517, 177–180 (2015).

    Article  ADS  Google Scholar 

  21. Bonarota, M., Le Gouët, J.-L. & Chanelière, T. New J. Phys. 13, 013013 (2011).

    Article  ADS  Google Scholar 

  22. Sinclair, N. et al. Phys. Rev. Lett. 113, 053603 (2014).

    Article  ADS  Google Scholar 

  23. Bao, X.-H. et al. Proc. Natl Acad. Sci. USA 109, 20347–20351 (2012).

    Article  ADS  Google Scholar 

  24. Bussières, F. et al. Nat. Photon. 8, 775–778 (2014).

    Article  ADS  Google Scholar 

  25. Sun, Q.-C. et al. Nat. Photon. 10, 671–675 (2016).

    Article  ADS  Google Scholar 

  26. Valivarthi, R. et al. Nat. Photon. 10, 676–680 (2016).

    Article  ADS  Google Scholar 

  27. Maurer, P.  C. et al. Science 336, 1283–1286 (2012).

    Article  ADS  Google Scholar 

  28. Yin, J. et al. Science 356, 1140–1144 (2017).

    Article  Google Scholar 

  29. Ren, J.-G. et al. Nature 549, 70–73 (2017).

    Article  ADS  Google Scholar 

  30. Liao, S.-K. et al. Nature 549, 43–47 (2017).

    Article  ADS  Google Scholar 

  31. Reiserer, A., Ritter, S. & Rempe, G. Science 342, 1349–1351 (2013).

    Article  ADS  Google Scholar 

  32. Takenaka, H. et al. Nat. Photon. 11, 502–508 (2017).

    Article  Google Scholar 

  33. Andrews, R.  W. et al. Nat. Phys. 10, 321–326 (2014).

    Article  Google Scholar 

  34. Boone, K. et al. Phys. Rev. A 91, 052325 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Simon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon, C. Towards a global quantum network. Nature Photon 11, 678–680 (2017). https://doi.org/10.1038/s41566-017-0032-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-017-0032-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing