Comment | Published:

Towards a global quantum network

Nature Photonicsvolume 11pages678680 (2017) | Download Citation

The creation of a global quantum network is now a realistic proposition thanks to developments in satellite and fibre links and quantum memory. Applications will range from secure communication and fundamental physics experiments to a future quantum internet.

  • Subscribe to Nature Photonics for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    Barz, S. et al. Science 335, 303–308 (2012).

  2. 2.

    Jakobi, M. et al. Phys. Rev. A 83, 022301 (2011).

  3. 3.

    Komar, P. et al. Nat. Phys. 10, 582–587 (2014).

  4. 4.

    Gottesman, D., Jennewein, T. & Croke, S. Phys. Rev. Lett. 109, 070503 (2012).

  5. 5.

    Rideout, D. et al. Class. Quant. Grav. 29, 224011 (2012).

  6. 6.

    Korzh, B. et al. Nat. Photon. 9, 163–68 (2015).

  7. 7.

    Ursin, R. et al. Nat. Phys. 3, 481–486 (2007).

  8. 8.

    Corning SMF-28 Ultra Optical Fiber: Product Information (Corning Incorporated, Corning, NY, 2014); https://www.corning.com/media/worldwide/coc/documents/Fiber/SMF-28%20Ultra.pdf

  9. 9.

    Ortigoso, J. Preprint at https://arxiv.org/abs/1707.06910 (2017).

  10. 10.

    Makovejs, S. et al. In Optical Fiber Communication Conference paper Th5A.2 (Optical Society of America, 2015).

  11. 11.

    Roberts, P.  J. et al. Opt. Express 13, 236–244 (2005).

  12. 12.

    Saad, M. Proc. SPIE 8307, 83070N (2011).

  13. 13.

    Sangouard, N., Simon, C., De Riedmatten, H. & Gisin, N. Rev. Mod. Phys. 83, 33–80 (2011).

  14. 14.

    Muralidharan, S. et al. Sci. Rep. 6, 20463 (2016).

  15. 15.

    Ritter, S. et al. Nature 484, 195–200 (2012).

  16. 16.

    Monroe, C. et al. Phys. Rev. A 89, 022317 (2014).

  17. 17.

    Hensen, B. et al. Nature 526, 682–686 (2015).

  18. 18.

    Yang, S.-J., Wang, X.-J., Bao, X.-H. & Pan, J.-W. Nat. Photon. 10, 381–384 (2016).

  19. 19.

    Hedges, M.  P., Longdell, J.  J., Li, Y. & Sellars, M.  J. Nature 465, 1052–1056 (2010).

  20. 20.

    Zhong, M. et al. Nature 517, 177–180 (2015).

  21. 21.

    Bonarota, M., Le Gouët, J.-L. & Chanelière, T. New J. Phys. 13, 013013 (2011).

  22. 22.

    Sinclair, N. et al. Phys. Rev. Lett. 113, 053603 (2014).

  23. 23.

    Bao, X.-H. et al. Proc. Natl Acad. Sci. USA 109, 20347–20351 (2012).

  24. 24.

    Bussières, F. et al. Nat. Photon. 8, 775–778 (2014).

  25. 25.

    Sun, Q.-C. et al. Nat. Photon. 10, 671–675 (2016).

  26. 26.

    Valivarthi, R. et al. Nat. Photon. 10, 676–680 (2016).

  27. 27.

    Maurer, P.  C. et al. Science 336, 1283–1286 (2012).

  28. 28.

    Yin, J. et al. Science 356, 1140–1144 (2017).

  29. 29.

    Ren, J.-G. et al. Nature 549, 70–73 (2017).

  30. 30.

    Liao, S.-K. et al. Nature 549, 43–47 (2017).

  31. 31.

    Reiserer, A., Ritter, S. & Rempe, G. Science 342, 1349–1351 (2013).

  32. 32.

    Takenaka, H. et al. Nat. Photon. 11, 502–508 (2017).

  33. 33.

    Andrews, R.  W. et al. Nat. Phys. 10, 321–326 (2014).

  34. 34.

    Boone, K. et al. Phys. Rev. A 91, 052325 (2015).

Download references

Author information

Affiliations

  1. Institute for Quantum Science and Technology and Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, T2N 1N4, Canada

    • Christoph Simon

Authors

  1. Search for Christoph Simon in:

Corresponding author

Correspondence to Christoph Simon.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/s41566-017-0032-0

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.