Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rabi oscillations of X-ray radiation between two nuclear ensembles

Abstract

The realization of the strong coupling regime between a single cavity mode and an electromagnetic resonance is a centrepiece of quantum optics. In this regime, the reversible exchange of a photon between the two components of the system leads to so-called Rabi oscillations. Strong coupling is used in the optical and infrared regimes, for instance, to produce non-classical states of light, enhance optical nonlinearities and control quantum states. Here, we report the first observation of Rabi oscillations of an X-ray photon between two resonant 57Fe layers embedded in two coupled cavities. The system is described by an effective Hamiltonian, in which the two layers couple strongly. We observe sinusoidal beating as the signature of the Rabi oscillations in the system’s temporal evolution, as well as the splitting of nuclear resonances in the reflected light spectrum. Our results significantly advance the development of the new field of X-ray quantum optics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scheme of the experiment and the quantum optical model
Fig. 2: Measured energy spectra.
Fig. 3: Measurement of Rabi oscillations
Fig. 4: Parameters obtained by the model fit across a range of X-ray incidence angles

Similar content being viewed by others

References

  1. Vagizov, F., Antonov, V., Radeonychev, Y. V., Shakhmuratov, R. N. & Kocharovskaya, O. Coherent control of the waveforms of recoilless γ-ray photons. Nature 508, 80–83 (2014).

    Article  ADS  Google Scholar 

  2. Liao, W.-T., Pálffy, A. & Keitel, C. H. Coherent storage and phase modulation of single hard-X-ray photons using nuclear excitons. Phys. Rev. Lett. 109, 197403 (2012).

    Article  ADS  Google Scholar 

  3. Kong, X. & Pálffy, A. Stopping narrow-band X-ray pulses in nuclear media. Phys. Rev. Lett. 116, 197402 (2016).

    Article  ADS  Google Scholar 

  4. Gunst, J., Keitel, C. H. & Pálffy, A. Logical operations with single X-ray photons via dynamically-controlled nuclear resonances. Sci. Rep. 6, 25136 (2016).

    Article  ADS  Google Scholar 

  5. Liao, W.-T. & Pálffy, A. Optomechanically induced transparency of X-rays via optical control. Sci. Rep. 7, 321 (2017).

    Article  ADS  Google Scholar 

  6. Röhlsberger, R., Schlage, K., Sahoo, B., Couet, S. & Rüffer, R. Collective Lamb shift in single photon superradiance. Science 328, 1248–1251 (2010).

    Article  ADS  MATH  Google Scholar 

  7. Röhlsberger, R., Wille, H., Schlage, K. & Sahoo, B. Electromagnetically induced transparency with resonant nuclei in a cavity. Nature 482, 199–203 (2011).

    Article  Google Scholar 

  8. Heeg, K. P. et al. Vacuum-assisted generation and control of atomic coherences at X-ray energies. Phys. Rev. Lett. 111, 073601 (2013).

    Article  ADS  Google Scholar 

  9. Heeg, K. P. et al. Interferometric phase detection at X-ray energies via Fano resonance control. Phys. Rev. Lett. 114, 207401 (2015).

    Article  ADS  Google Scholar 

  10. Heeg, K. P. et al. Tunable subluminal propagation of narrow-band X-ray pulses. Phys. Rev. Lett. 114, 203601 (2015).

    Article  ADS  Google Scholar 

  11. Heeg, K. P. et al. Spectral narrowing of X-ray pulses for precision spectroscopy with nuclear resonances. Science 357, 375–378 (2017).

  12. Raimond, J. M., Brune, M. & Haroche, S. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton–photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    Article  ADS  Google Scholar 

  14. Brune, M. et al. Quantum Rabi oscillation: a direct test of field quantization in a cavity. Phys. Rev. Lett. 76, 1800–1803 (1996).

    Article  ADS  MATH  Google Scholar 

  15. Raizen, M. G., Thompson, R. J., Brecha, R. J., Kimble, H. J. & Carmichael, H. J. Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity. Phys. Rev. Lett. 63, 240–243 (1989).

    Article  ADS  Google Scholar 

  16. Saba, M. et al. High-temperature ultrafast polariton parametric amplification in semiconductor microcavities. Nature 414, 731–735 (2001).

    Article  ADS  Google Scholar 

  17. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    Article  ADS  Google Scholar 

  18. Haber, J. et al. Collective strong coupling of X-rays and nuclei in a nuclear optical lattice. Nat. Photon. 10, 445–449 (2016).

    Article  ADS  Google Scholar 

  19. Baumann, K., Guerlin, C., Brennecke, F. & Esslinger, T. Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature 464, 1301–1306 (2010).

    Article  ADS  Google Scholar 

  20. Majer, J. et al. Coupling superconduction circuits via a cavity bus. Nature 449, 443–447 (2007).

    Article  ADS  Google Scholar 

  21. Simon, J. et al. Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472, 307–312 (2011).

    Article  ADS  Google Scholar 

  22. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    Article  ADS  Google Scholar 

  23. Bloch, I., Dalibard, J. & Nascimbene, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).

    Article  Google Scholar 

  24. Sahoo, B. et al. Preparation and characterization of ultrathin stainless steel films. AIP Conf. Proc. 1347, 57–60 (2011).

  25. Heeg, K. P. & Evers, J. X-ray quantum optics with Mössbauer nuclei embedded in thin-film cavities. Phys. Rev. A 88, 043828 (2013).

    Article  ADS  Google Scholar 

  26. Heeg, K. P. & Evers, J. Collective effects between multiple nuclear ensembles in an X-ray cavity–QED setup. Phys. Rev. A 91, 063803 (2015).

    Article  ADS  Google Scholar 

  27. Dudin, Y., Li, L., Bariani, F. & Kuzmich, A. Observation of coherent many-body Rabi oscillations. Nat. Phys. 8, 790–794 (2012).

    Article  Google Scholar 

  28. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    Article  ADS  Google Scholar 

  29. Khitrova, G., Gibbs, H., Kira, M., Koch, S. W. & Scherer, A. Vacuum Rabi splitting in semiconductors. Nat. Phys. 2, 81–90 (2006).

    Article  Google Scholar 

  30. Kanter, E. P. et al. Unveiling and driving hidden resonances with high-fluence, high-intensity X-ray pulses. Phys. Rev. Lett. 107, 233001 (2011).

    Article  ADS  Google Scholar 

  31. Doumy, G. et al. Nonlinear atomic response to intense ultrashort X rays. Phys. Rev. Lett. 106, 083002 (2011).

    Article  ADS  Google Scholar 

  32. Glover, T. et al. X-ray and optical wave mixing. Nature 488, 603–608 (2012).

    Article  ADS  Google Scholar 

  33. Rohringer, N. et al. Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laser. Nature 481, 488–491 (2012).

    Article  ADS  Google Scholar 

  34. Fuchs, M. et al. Anomalous nonlinear X-ray Compton scattering. Nat. Phys. 11, 964–970 (2015).

    Article  Google Scholar 

  35. Prince, K. et al. Coherent control with a short-wavelength free-electron laser. Nat. Photon. 10, 176–179 (2016).

  36. van Bürck, U. Coherent pulse propagation through resonant media. Hyperfine. Interact. 123, 483–509 (1999).

    Article  Google Scholar 

  37. Kagan, Y., Afanas’ev, A. M. & Kohn, V. G. On excitation of isomeric nuclear states in a crystal by synchrotron radiation. J. Phys. C 12, 615 (1979).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.H., C.S., L.B. and R.Rö. acknowledge the support of the Helmholtz Association through project-oriented funds. X.K. acknowledges financial support from the China Scholarship Council. X.K. and A.P. are part of and were supported by the DFG Collaborative Research Centre SFB 1225 (ISOQUANT). S.W. acknowledges funding by the Joachim Herz Foundation. The authors thank K. Heeg and J. Evers for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

X.K. and A.P. proposed the experiment. J.H. and R.Rö. devised the experimental concept and designed the set-up. J.H. and S.W. fabricated the sample. C.S., J.G., L.B., J.H., R.Rü. and R.Rö. performed the experiment. J.H. performed the data analysis. J.H., X.K., A.P. and R.Rö. wrote the paper. All authors participated in discussing the results.

Corresponding authors

Correspondence to Adriana Pálffy or Ralf Röhlsberger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haber, J., Kong, X., Strohm, C. et al. Rabi oscillations of X-ray radiation between two nuclear ensembles. Nature Photon 11, 720–725 (2017). https://doi.org/10.1038/s41566-017-0013-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-017-0013-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing