Abstract

Sensitive X-ray detection is crucial for medical diagnosis, industrial inspection and scientific research. The recently described hybrid lead halide perovskites have demonstrated low-cost fabrication and outstanding performance for direct X-ray detection, but they all contain toxic Pb in a soluble form. Here, we report sensitive X-ray detectors using solution-processed double perovskite Cs2AgBiBr6 single crystals. Through thermal annealing and surface treatment, we largely eliminate Ag+/Bi3+ disordering and improve the crystal resistivity, resulting in a detector with a minimum detectable dose rate as low as 59.7 nGyair s−1, comparable to the latest record of 0.036 μGyair s−1 using CH3NH3PbBr3 single crystals. Suppressed ion migration in Cs2AgBiBr6 permits relatively large external bias, guaranteeing efficient charge collection without a substantial increase in noise current and thus enabling the low detection limit.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Sakdinawat, A. & Attwood, D. Nanoscale X-ray imaging. Nat. Photon. 4, 840–848 (2010).

  2. 2.

    Yaffe, M. & Rowlands, J. X-ray detectors for digital radiography. Phys. Med. Biol. 42, 1–39 (1999).

  3. 3.

    Kasap, S. et al. Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors. Sensors 11, 5112–5157 (2011).

  4. 4.

    Heiss, W. & Brabec, C. X-ray imaging: perovskites target X-ray detection. Nat. Photon. 10, 288–289 (2016).

  5. 5.

    Yakunin, S. et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photon. 9, 444–449 (2015).

  6. 6.

    Wei, H. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photon. 10, 333–339 (2016).

  7. 7.

    Wei, W. et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photon. 11, 315–321 (2017).

  8. 8.

    Yakunin, S. et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photon. 10, 585–589 (2016).

  9. 9.

    Nazarenko, O. et al. Single crystals of caesium formamidinium lead halide perovskites: solution growth and gamma dosimetry. NPG Asia Mater. 9, e373 (2017).

  10. 10.

    Babayigit, A., Ethirajan, A., Muller, M. & Conings, B. Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15, 247–251 (2016).

  11. 11.

    European Union. Directive 2011/65/EU of the European Parliament and of the Council on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Off. J. Eur. Union 54, 88–110 (2002).

  12. 12.

    ANSI/HPS N43.17. Radiation Safety for Personnel Security Screening Systems Using X-Ray or Gamma Radiations (HPS, 2009); http://hps.org/hpssc/

  13. 13.

    Polischuk, B. T., Shukri, Z., Legros, A. & Rougeot, H. Selenium direct-converter structure for static and dynamic X-ray detection in medical imaging applications. Proc. Med. Imag. 1998, 494–504 (1998).

  14. 14.

    Thompson, M., Ellison, S. L. & Wood, R. Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl. Chem. 74, 835–855 (2002).

  15. 15.

    Evans, R. D. & Noyau, A. The Atomic Nucleus Vol. 582 (McGraw-Hill, New York, 1955).

  16. 16.

    Slavney, A. H., Hu, T., Lindenberg, A. M. & Karunadasa, H. I. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc 138, 2138–2141 (2016).

  17. 17.

    Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

  18. 18.

    Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).

  19. 19.

    Berger, M. J. et al. XCOM: Photon Cross Sections Database: NIST Standard Reference Database 8 (NIST, 2013); https://www.nist.gov/pml/xcom-photon-cross-sections-database

  20. 20.

    McClure, E. T., Ball, M. R., Windl, W. & Woodward, P. M. Cs2AgBiX6 (X=Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. 28, 1348–1354 (2016).

  21. 21.

    Setter, N. & Cross, L. The contribution of structural disorder to diffuse phase transitions in ferroelectrics. J. Mater. Sci. 15, 2478–2482 (1980).

  22. 22.

    Lim, T.-W. et al. Insights into cationic ordering in Re-based double perovskite oxides. Sci. Rep. 6, 19746 (2016).

  23. 23.

    Xiao, Z., Meng, W., Wang, J. & Yan, Y. Thermodynamic stability and defect chemistry of bismuth-based lead-free double perovskites. ChemSusChem 9, 2628–2633 (2016).

  24. 24.

    Stoumpos, C. C. et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst. Growth Des. 13, 2722–2727 (2013).

  25. 25.

    Kim, K. et al. Purification of CdZnTe by electromigration. J. Appl. Phys. 117, 145702 (2015).

  26. 26.

    Lian, Z. et al. Perovskite CH3NH3PbI3 (Cl) single crystals: rapid solution growth, unparalleled crystalline quality, and low trap density toward 108 cm–3. J. Am. Chem. Soc. 138, 9409–9412 (2016).

  27. 27.

    Liu, Y. et al. Thinness‐ and shape‐controlled growth for ultrathin single‐crystalline perovskite wafers for mass production of superior photoelectronic devices. Adv. Mater. 28, 9204–9209 (2016).

  28. 28.

    Fang, Y. et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photon. 9, 679–686 (2015).

  29. 29.

    Knoll, G. F. Radiation Detection and Measurement (Wiley, New York, 2010).

  30. 30.

    Devanathan, R., Corrales, L. R., Gao, F. & Weber, W. J. Signal variance in gamma-ray detectors—a review. Nucl. Instrum. Methods Phys. Res. Sect. A 565, 637–649 (2006).

  31. 31.

    Fraboni, B. et al. Organic semiconducting single crystals as next generation of low-cost, room-temperature electrical X-ray detectors. Adv. Mater. 24, 2289–2293 (2012).

  32. 32.

    He, J. et al. Synergetic effect of silver nanocrystals applied in PbS colloidal quantum dots for high-performance infrared photodetectors. ACS Photon. 1, 936–943 (2014).

  33. 33.

    Kasap, S. O. X-ray sensitivity of photoconductors: application to stabilized a-Se. J. Phys. D 33, 2853–2865 (2000).

  34. 34.

    Fang, Y. & Huang, J. Resolving weak light of sub‐picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Adv. Mater. 27, 2804–2810 (2015).

  35. 35.

    Boone, J. M. & Seibert, J. A. An accurate method for computer‐generating tungsten anode X‐ray spectra from 30 to 140 kV. Med. Phys. 24, 1661–1670 (1997).

  36. 36.

    Li, D. et al. Electronic and ionic transport dynamics in organolead halide perovskites. ACS Nano 10, 6933–6941 (2016).

  37. 37.

    Meloni, S. et al. Ionic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cells. Nat. Commun. 7, 10334 (2016).

  38. 38.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

  39. 39.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

  40. 40.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

  41. 41.

    Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

Download references

Acknowledgements

This work was supported financially by the Major State Basic Research Development Program of China (2016YFB0700700, 2016YFA0204000), the National Natural Science Foundation of China (91433105, 11674237, 51602211, 61501197, 61425001), the HUST Key Innovation Team for Interdisciplinary Promotion (2016JCTD111, 2017KFXKJC003) and the Natural Science Foundation of Jiangsu Province of China (grant no. BK20160299). The authors acknowledge the Analytical and Testing Center of HUST and facility support from the Center for Nanoscale Characterization and Devices, WNLO. Theoretical calculations were performed in TianHe-II of the National Supercomputer Center in Guangzhou. X. Miao and X. Yang at Huazhong University of Science and Technology and Z. Ning at ShanghaiTech University are thanked for help with measurements.

Author information

Author notes

  1. Weicheng Pan, Haodi Wu, Jiajun Luo and Zhenzhou Deng contributed equally to this work.

Affiliations

  1. Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), 430074, Wuhan, China

    • Weicheng Pan
    • , Haodi Wu
    • , Jiajun Luo
    • , Cong Ge
    • , Chao Chen
    • , Guangda Niu
    • , Lixiao Yin
    • , Ying Zhou
    •  & Jiang Tang
  2. School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 430074, Wuhan, China

    • Weicheng Pan
    • , Haodi Wu
    • , Jiajun Luo
    • , Cong Ge
    • , Chao Chen
    • , Guangda Niu
    • , Lixiao Yin
    • , Ying Zhou
    •  & Jiang Tang
  3. School of Information Engineering, Nanchang University, 330031, Nanchang, China

    • Zhenzhou Deng
  4. School of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China

    • Zhenzhou Deng
    •  & Qingguo Xie
  5. Soochow Institute for Energy and Materials InnovationS (SIEMIS), College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 215006, Suzhou, China

    • Xiaowei Jiang
    •  & Wan-Jian Yin
  6. Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, 215006, Suzhou, China

    • Xiaowei Jiang
    •  & Wan-Jian Yin
  7. Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, 100124, Beijing, China

    • Lujun Zhu
    • , Xiaoxing Ke
    •  & Manling Sui

Authors

  1. Search for Weicheng Pan in:

  2. Search for Haodi Wu in:

  3. Search for Jiajun Luo in:

  4. Search for Zhenzhou Deng in:

  5. Search for Cong Ge in:

  6. Search for Chao Chen in:

  7. Search for Xiaowei Jiang in:

  8. Search for Wan-Jian Yin in:

  9. Search for Guangda Niu in:

  10. Search for Lujun Zhu in:

  11. Search for Lixiao Yin in:

  12. Search for Ying Zhou in:

  13. Search for Qingguo Xie in:

  14. Search for Xiaoxing Ke in:

  15. Search for Manling Sui in:

  16. Search for Jiang Tang in:

Contributions

J.T. conceived and supervised the project. W.P., H.W., J.L., Z.D., G.N. and J.T. designed the experiments and analysed the data. W.P., H.W. and J.L. carried out most experiments regarding material preparation and characterizations, as well as device optimization. Z.D. carried out X-ray source building and initial detector performance characterization. X.J. and W.-J.Y. performed theoretical simulations and analysed the results. Q.X. provided the facility for X-ray detector measurements and some consultation. C.G., C.C. and Y.Z. assisted with device optimization and data analysis. L.Z., X.K. and M.S. carried out SAED characterization. W.P., H.W., J.L., G.N. and J.T. wrote the paper. All authors commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Guangda Niu or Qingguo Xie or Jiang Tang.

Electronic supplementary material

  1. Supplementary Information

    Supplementary Text, Supplementary Figures and Supplementary Tables

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41566-017-0012-4

Further reading