Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit


Sensitive X-ray detection is crucial for medical diagnosis, industrial inspection and scientific research. The recently described hybrid lead halide perovskites have demonstrated low-cost fabrication and outstanding performance for direct X-ray detection, but they all contain toxic Pb in a soluble form. Here, we report sensitive X-ray detectors using solution-processed double perovskite Cs2AgBiBr6 single crystals. Through thermal annealing and surface treatment, we largely eliminate Ag+/Bi3+ disordering and improve the crystal resistivity, resulting in a detector with a minimum detectable dose rate as low as 59.7 nGyair s−1, comparable to the latest record of 0.036 μGyair s−1 using CH3NH3PbBr3 single crystals. Suppressed ion migration in Cs2AgBiBr6 permits relatively large external bias, guaranteeing efficient charge collection without a substantial increase in noise current and thus enabling the low detection limit.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cs2AgBiBr6 perovskite properties.
Fig. 2: Optimization of Cs2AgBiBr6 SC.
Fig. 3: Performance of Cs2AgBiBr6 SC X-ray detector.
Fig. 4: Measured and calculated ionic migration in Cs2AgBiBr6 SCs.


  1. Sakdinawat, A. & Attwood, D. Nanoscale X-ray imaging. Nat. Photon. 4, 840–848 (2010).

    Article  ADS  Google Scholar 

  2. Yaffe, M. & Rowlands, J. X-ray detectors for digital radiography. Phys. Med. Biol. 42, 1–39 (1999).

    Article  Google Scholar 

  3. Kasap, S. et al. Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors. Sensors 11, 5112–5157 (2011).

    Article  Google Scholar 

  4. Heiss, W. & Brabec, C. X-ray imaging: perovskites target X-ray detection. Nat. Photon. 10, 288–289 (2016).

    Article  ADS  Google Scholar 

  5. Yakunin, S. et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photon. 9, 444–449 (2015).

    Article  ADS  Google Scholar 

  6. Wei, H. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photon. 10, 333–339 (2016).

    Article  ADS  Google Scholar 

  7. Wei, W. et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photon. 11, 315–321 (2017).

    Article  ADS  Google Scholar 

  8. Yakunin, S. et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photon. 10, 585–589 (2016).

    Article  ADS  Google Scholar 

  9. Nazarenko, O. et al. Single crystals of caesium formamidinium lead halide perovskites: solution growth and gamma dosimetry. NPG Asia Mater. 9, e373 (2017).

    Article  Google Scholar 

  10. Babayigit, A., Ethirajan, A., Muller, M. & Conings, B. Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15, 247–251 (2016).

    Article  ADS  Google Scholar 

  11. European Union. Directive 2011/65/EU of the European Parliament and of the Council on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Off. J. Eur. Union 54, 88–110 (2002).

    Google Scholar 

  12. ANSI/HPS N43.17. Radiation Safety for Personnel Security Screening Systems Using X-Ray or Gamma Radiations (HPS, 2009);

  13. Polischuk, B. T., Shukri, Z., Legros, A. & Rougeot, H. Selenium direct-converter structure for static and dynamic X-ray detection in medical imaging applications. Proc. Med. Imag. 1998, 494–504 (1998).

  14. Thompson, M., Ellison, S. L. & Wood, R. Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl. Chem. 74, 835–855 (2002).

  15. Evans, R. D. & Noyau, A. The Atomic Nucleus Vol. 582 (McGraw-Hill, New York, 1955).

  16. Slavney, A. H., Hu, T., Lindenberg, A. M. & Karunadasa, H. I. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc 138, 2138–2141 (2016).

    Article  Google Scholar 

  17. Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    Article  ADS  Google Scholar 

  18. Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).

    Article  Google Scholar 

  19. Berger, M. J. et al. XCOM: Photon Cross Sections Database: NIST Standard Reference Database 8 (NIST, 2013);

  20. McClure, E. T., Ball, M. R., Windl, W. & Woodward, P. M. Cs2AgBiX6 (X=Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. 28, 1348–1354 (2016).

    Article  Google Scholar 

  21. Setter, N. & Cross, L. The contribution of structural disorder to diffuse phase transitions in ferroelectrics. J. Mater. Sci. 15, 2478–2482 (1980).

    Article  ADS  Google Scholar 

  22. Lim, T.-W. et al. Insights into cationic ordering in Re-based double perovskite oxides. Sci. Rep. 6, 19746 (2016).

    Article  ADS  Google Scholar 

  23. Xiao, Z., Meng, W., Wang, J. & Yan, Y. Thermodynamic stability and defect chemistry of bismuth-based lead-free double perovskites. ChemSusChem 9, 2628–2633 (2016).

    Article  Google Scholar 

  24. Stoumpos, C. C. et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst. Growth Des. 13, 2722–2727 (2013).

    Article  Google Scholar 

  25. Kim, K. et al. Purification of CdZnTe by electromigration. J. Appl. Phys. 117, 145702 (2015).

    Article  ADS  Google Scholar 

  26. Lian, Z. et al. Perovskite CH3NH3PbI3 (Cl) single crystals: rapid solution growth, unparalleled crystalline quality, and low trap density toward 108 cm–3. J. Am. Chem. Soc. 138, 9409–9412 (2016).

    Article  Google Scholar 

  27. Liu, Y. et al. Thinness‐ and shape‐controlled growth for ultrathin single‐crystalline perovskite wafers for mass production of superior photoelectronic devices. Adv. Mater. 28, 9204–9209 (2016).

    Article  ADS  Google Scholar 

  28. Fang, Y. et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photon. 9, 679–686 (2015).

    Article  ADS  Google Scholar 

  29. Knoll, G. F. Radiation Detection and Measurement (Wiley, New York, 2010).

  30. Devanathan, R., Corrales, L. R., Gao, F. & Weber, W. J. Signal variance in gamma-ray detectors—a review. Nucl. Instrum. Methods Phys. Res. Sect. A 565, 637–649 (2006).

    Article  ADS  Google Scholar 

  31. Fraboni, B. et al. Organic semiconducting single crystals as next generation of low-cost, room-temperature electrical X-ray detectors. Adv. Mater. 24, 2289–2293 (2012).

    Article  Google Scholar 

  32. He, J. et al. Synergetic effect of silver nanocrystals applied in PbS colloidal quantum dots for high-performance infrared photodetectors. ACS Photon. 1, 936–943 (2014).

    Article  Google Scholar 

  33. Kasap, S. O. X-ray sensitivity of photoconductors: application to stabilized a-Se. J. Phys. D 33, 2853–2865 (2000).

    Article  ADS  Google Scholar 

  34. Fang, Y. & Huang, J. Resolving weak light of sub‐picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Adv. Mater. 27, 2804–2810 (2015).

    Article  Google Scholar 

  35. Boone, J. M. & Seibert, J. A. An accurate method for computer‐generating tungsten anode X‐ray spectra from 30 to 140 kV. Med. Phys. 24, 1661–1670 (1997).

    Article  Google Scholar 

  36. Li, D. et al. Electronic and ionic transport dynamics in organolead halide perovskites. ACS Nano 10, 6933–6941 (2016).

    Article  Google Scholar 

  37. Meloni, S. et al. Ionic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cells. Nat. Commun. 7, 10334 (2016).

    Article  ADS  Google Scholar 

  38. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  Google Scholar 

  39. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  ADS  Google Scholar 

  40. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

  41. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  ADS  Google Scholar 

Download references


This work was supported financially by the Major State Basic Research Development Program of China (2016YFB0700700, 2016YFA0204000), the National Natural Science Foundation of China (91433105, 11674237, 51602211, 61501197, 61425001), the HUST Key Innovation Team for Interdisciplinary Promotion (2016JCTD111, 2017KFXKJC003) and the Natural Science Foundation of Jiangsu Province of China (grant no. BK20160299). The authors acknowledge the Analytical and Testing Center of HUST and facility support from the Center for Nanoscale Characterization and Devices, WNLO. Theoretical calculations were performed in TianHe-II of the National Supercomputer Center in Guangzhou. X. Miao and X. Yang at Huazhong University of Science and Technology and Z. Ning at ShanghaiTech University are thanked for help with measurements.

Author information

Authors and Affiliations



J.T. conceived and supervised the project. W.P., H.W., J.L., Z.D., G.N. and J.T. designed the experiments and analysed the data. W.P., H.W. and J.L. carried out most experiments regarding material preparation and characterizations, as well as device optimization. Z.D. carried out X-ray source building and initial detector performance characterization. X.J. and W.-J.Y. performed theoretical simulations and analysed the results. Q.X. provided the facility for X-ray detector measurements and some consultation. C.G., C.C. and Y.Z. assisted with device optimization and data analysis. L.Z., X.K. and M.S. carried out SAED characterization. W.P., H.W., J.L., G.N. and J.T. wrote the paper. All authors commented on the manuscript.

Corresponding authors

Correspondence to Guangda Niu, Qingguo Xie or Jiang Tang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Text, Supplementary Figures and Supplementary Tables

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, W., Wu, H., Luo, J. et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nature Photon 11, 726–732 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing