Control of light by curved space in nanophotonic structures



Nanophotonics is based on the ability to construct structures with specific spatial distributions of the refractive index. Conventional nanophotonic structures are fabricated in planar settings, similar to electronic integrated circuits. We present a new class of nanophotonic structures with intricate design in three dimensions inspired by general relativity concepts, where the evolution of light is controlled through the space curvature of the medium. We demonstrate this concept by studying the evolution of light in a paraboloid structure inspired by the Schwarzschild metric describing the space surrounding a massive black hole. Our construction allows control over the trajectories, the diffraction properties and the phase and group velocities of wavepackets propagating within the curved-space structure. Finally, our structure exhibits tunnelling through an electromagnetic bottleneck by transforming guided modes into radiation modes and back. This generic concept can serve as the basis for curved nanophotonics and can be employed in integrated photonic circuits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Evolution of the modes in the Flamm paraboloid.
Fig. 2: Effects of the curvature of space on the phase and group velocities of light in the hollow paraboloid waveguide.
Fig. 3: Experimental observation of the evolution of an optical beam in the microstructured surface waveguide.
Fig. 4: Experimental results on light manipulation via space curvature.


  1. 1.

    Laundau, L. D. & Lifshitz, E. M. The Classical Theory Of Fields (Butterworth-Heinemann, Oxford, 1975).

    Google Scholar 

  2. 2.

    Leonhardt, U. & Philbin, T. G. General relativity in electrical engineering. New J. Phys. 8, 247 (2006).

    Article  ADS  Google Scholar 

  3. 3.

    Cai, W. & Shalaev, V. Optical Metamaterials Fundamentals and Applications (Springer, New York, 2010).

    Google Scholar 

  4. 4.

    Grbic, A. & Eleftheriades, G. V. Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys. Rev. Lett. 92, 117403 (2004).

    Article  ADS  Google Scholar 

  5. 5.

    Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    MathSciNet  Article  ADS  Google Scholar 

  6. 6.

    Alù, A. & Engheta, N. Multifrequency optical invisibility cloak with layered plasmonic shells. Phys. Rev. Lett. 100, 113901 (2008).

    Article  ADS  Google Scholar 

  7. 7.

    Ergin, T., Stenger, N., Brenner, P., Pendry, J. B. & Wegener, M. Three-dimensional invisibility cloak at optical wavelengths. Science 328, 337–339 (2010).

    Article  ADS  Google Scholar 

  8. 8.

    Chen, X. et al. Macroscopic invisibility cloaking of visible light. Nat. Commun. 2, 176 (2011).

    Article  Google Scholar 

  9. 9.

    Shalaev, V. M. Optical negative-index metamaterials. Nat. Photon. 1, 41–48 (2007).

    Article  ADS  Google Scholar 

  10. 10.

    Alù, A., Silveirinha, M. G., Salandrino, A. & Engheta, N. Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys. Rev. B 75, 155410 (2007).

    Article  ADS  Google Scholar 

  11. 11.

    Silveirinha, M. & Engheta, N. Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media. Phys. Rev. B 75, 075119 (2007).

    Article  ADS  Google Scholar 

  12. 12.

    Edwards, B., Alù, A., Young, M. E., Silveirinha, M. & Engheta, N. Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. Phys. Rev. Lett. 100, 033903 (2008).

    Article  ADS  Google Scholar 

  13. 13.

    Naik, G. V., Shalaev, V. M. & Boltasseva, A. Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013).

    Article  Google Scholar 

  14. 14.

    Smolyaninov, I. I., Smolyaninova, V. N., Kildishev, A. V. & Shalaev, V. M. Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking. Phys. Rev. Lett. 102, 213901 (2009).

    Article  ADS  Google Scholar 

  15. 15.

    Batz, S. & Peschel, U. Linear and nonlinear optics in curved space. Phys. Rev. A 78, 043821 (2008).

    Article  ADS  Google Scholar 

  16. 16.

    Schultheiss, V. H. et al. Optics in curved space. Phys. Rev. Lett. 105, 143901 (2010).

    Article  ADS  Google Scholar 

  17. 17.

    Bekenstein, R., Nemirovsky, J., Kaminer, I. & Segev, M. Shape-preserving accelerating electromagnetic wave packets in curved space. Phys. Rev. X 4, 011038 (2014).

    Google Scholar 

  18. 18.

    Genov, D. A., Zhang, S. & Zhang, X. Mimicking celestial mechanics in metamaterials. Nat. Phys. 5, 687–692 (2009).

    Article  Google Scholar 

  19. 19.

    Narimanov, E. E. & Kildishev, A. V. Optical black hole: broadband omnidirectional light absorber. Appl. Phys. Lett. 95, 041106 (2009).

    Article  ADS  Google Scholar 

  20. 20.

    Chen, H., Miao, R.-X. & Li, M. Transformation optics that mimics the system outside a Schwarzschild black hole. Opt. Express 18, 15183–15188 (2010).

    ADS  Google Scholar 

  21. 21.

    Fernández-Núñez, I. & Bulashenko, O. Anisotropic metamaterial as an analogue of a black hole. Phys. Lett. A 380, 1–8 (2016).

    Article  MATH  ADS  Google Scholar 

  22. 22.

    Philbin, T. G. et al. Fiber-optical analog of the event horizon. Science 319, 1367–1370 (2008).

    Article  ADS  Google Scholar 

  23. 23.

    Belgiorno, F. et al. Hawking radiation from ultrashort laser pulse filaments. Phys. Rev. Lett. 105, 203901 (2010).

    Article  ADS  Google Scholar 

  24. 24.

    Barceló, C., Liberati, S. & Visser, M. Analogue gravity. Living Reviews in Relativity 14, 3 (2011).

    Article  MATH  ADS  Google Scholar 

  25. 25.

    Demircan, A., Amiranashvili, Sh. & Steinmeyer, G. Controlling light by light with an optical event horizon. Phys. Rev. Lett. 106, 163901 (2011).

    Article  ADS  Google Scholar 

  26. 26.

    Sheng, C., Liu, H., Wang, Y., Zhu, S. N. & Genov, D. A. Trapping light by mimicking gravitational lensing. Nat. Photon. 7, 902–906 (2013).

    Article  ADS  Google Scholar 

  27. 27.

    Karen, E. et al. Nonlinear optics of fibre event horizons. Nat. Commun. 5, 4969 (2014).

    Article  Google Scholar 

  28. 28.

    Wang, S. F. et al. Optical event horizons from the collision of a soliton and its own dispersive wave. Phys. Rev. A 92, 023837 (2015).

    Article  ADS  Google Scholar 

  29. 29.

    Bekenstein, R., Schley, R., Mutzafi, M., Rotschild, C. & Segev, M. Optical simulations of gravitational effects in the Newton–Schrödinger system. Nat. Phys. 11, 872–878 (2015).

    Article  Google Scholar 

  30. 30.

  31. 31.

    Bekenstein, R. et al. Curved space nanophotonics inspired by general relativity. In Conference on Lasers and Electro-Optics paper FW1D.2 (Optical Society of America, 2016).

  32. 32.

    Kabessa, Y. et al. Nanophotonic structures constructed in a curved space inspired by general relativity concepts. In Advanced Photonics paper ITu1A.7 (Optical Society of America, 2016).

  33. 33.

    Kawata, S., Sun, H.-B., Tanaka, T. & Takada, K. Finer features for functional microdevices. Nature 412, 697–698 (2001).

    Article  ADS  Google Scholar 

  34. 34.

    Maruo, S., Nakamura, O. & Kawata, S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22, 132–134 (1997).

    Article  ADS  Google Scholar 

  35. 35.

    Aoki, T. et al. Observation of strong coupling between one atom and a monolithic microresonator. Nature 443, 671–674 (2006).

    Article  ADS  Google Scholar 

  36. 36.

    Dayan, B. et al. A photon turnstile dynamically regulated by one atom. Science 319, 1062–1065 (2008).

    Article  ADS  Google Scholar 

  37. 37.

    Shomroni, I. et al. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345, 903–906 (2014).

    Article  ADS  Google Scholar 

Download references


This research was supported by the Israeli Ministry of Science and Technology and by the US Air Force Office of Scientific Research. R.B. acknowledges support from the Adams Fellowship Program of the Israel Academy of Sciences and Humanities and the support of the National Science Foundation through a grant to ITAMP. Y.K. and A.J.A. thank Y. Garcia at the Brojde Center for Innovative Engineering and Computer Science for advice and assistance in using the Nanoscribe system.

Author information




All authors contributed significantly to this work.

Corresponding authors

Correspondence to Rivka Bekenstein or Yossef Kabessa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Information

Supplementary Video

Supplementary Video

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bekenstein, R., Kabessa, Y., Sharabi, Y. et al. Control of light by curved space in nanophotonic structures. Nature Photon 11, 664–670 (2017).

Download citation

Further reading