Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Single-qubit quantum memory exceeding ten-minute coherence time

An Author Correction to this article was published on 12 January 2018

This article has been updated

Abstract

A long-time quantum memory capable of storing and measuring quantum information at the single-qubit level is an essential ingredient for practical quantum computation and communication1,2. Currently, the coherence time of a single qubit is limited to less than 1 min, as demonstrated in trapped ion systems3,4,5, although much longer coherence times have been reported in ensembles of trapped ions6,7 and nuclear spins of ionized donors8,9. Here, we report the observation of a coherence time of over 10 min for a single qubit in a 171Yb+ ion sympathetically cooled by a 138Ba+ ion in the same Paul trap, which eliminates the problem of qubit-detection inefficiency from heating of the qubit ion10,11. We also apply a few thousand dynamical decoupling pulses to suppress ambient noise from magnetic-field fluctuations and phase noise from the local oscillator8,9,12,13,14,15,16. The long-time quantum memory of the single trapped ion qubit would be the essential component of scalable quantum computers1,17,18, quantum networks2,19,20 and quantum money21,22.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental set-up.
Fig. 2: Measurement of the noise spectrum of the system.
Fig. 3: KDD xy sequence and gate fidelity.
Fig. 4: Coherence time measurement and quantum process tomography.

Similar content being viewed by others

Change history

  • 12 January 2018

    In the version of this Letter originally published, in Fig. 2c legend, the entry ‘LO phase noise’ should not have been included. This has now been corrected in the online versions.

References

  1. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    Article  ADS  Google Scholar 

  2. Duan, L.-M. & Monroe, C. Quantum networks with trapped ions. Rev. Mod. Phys. 82, 1209–1224 (2012).

    Article  ADS  Google Scholar 

  3. Langer, C. et al. Long-lived qubit memory using atomic ions. Phys. Rev. Lett. 95, 060502 (2005).

    Article  ADS  Google Scholar 

  4. Häffner, H. et al. Robust entanglement. Appl. Phys. B 81, 151–153 (2005).

    Article  ADS  Google Scholar 

  5. Harty, T. et al. High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit. Phys. Rev. Lett. 113, 220501 (2014).

    Article  ADS  Google Scholar 

  6. Bollinger, J., Heizen, D., Itano, W., Gilbert, S. & Wineland, D. A 303-MHz frequency standard based on trapped Be+ ions. IEEE Trans. Instrum. Meas. 40, 126–128 (1991).

    Article  Google Scholar 

  7. Fisk, P. et al. Very high Q microwave spectroscopy on trapped 171Yb+ ions: application as a frequency standard. IEEE Trans. Instrum. Meas. 44, 113–116 (1995).

    Article  Google Scholar 

  8. Saeedi, K. et al. Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. Science 342, 830–833 (2013).

    Article  ADS  Google Scholar 

  9. Zhong, M. et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).

    Article  ADS  Google Scholar 

  10. Epstein, R. J. et al. Simplified motional heating rate measurements of trapped ions. Phys. Rev. A 76, 033411 (2007).

    Article  ADS  Google Scholar 

  11. Wesenberg, J. et al. Fluorescence during Doppler cooling of a single trapped atom. Phys. Rev. A 76, 053416 (2007).

    Article  ADS  Google Scholar 

  12. Khodjasteh, K. et al. Designing a practical high-fidelity long-time quantum memory. Nat. Commun. 4, 2045 (2013).

    Article  Google Scholar 

  13. Biercuk, M. J. et al. Optimized dynamical decoupling in a model quantum memory. Nature 458, 996–1000 (2009).

    Article  ADS  Google Scholar 

  14. Kotler, S., Akerman, N., Glickman, Y. & Ozeri, R. Nonlinear single-spin spectrum analyzer. Phys. Rev. Lett. 110, 110503 (2013).

    Article  ADS  Google Scholar 

  15. Souza, A. M., Álvarez, G. A. & Suter, D. Robust dynamical decoupling for quantum computing and quantum memory. Phys. Rev. Lett. 106, 240501 (2011).

    Article  ADS  Google Scholar 

  16. Haeberlen, U. High Resolution NMR in Solids Selective Averaging (Elsevier, 1976).

  17. Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002).

    Article  ADS  Google Scholar 

  18. Lekitsch, B. et al. Blueprint for a microwave trapped ion quantum computer. Sci. Adv. 3, e1601540 (2017).

    Article  ADS  Google Scholar 

  19. Monroe, C. & Kim, J. Scaling the ion trap quantum processor. Science 339, 1164–1169 (2013).

    Article  ADS  Google Scholar 

  20. Nickerson, N. H., Fitzsimons, J. F. & Benjamin, S. C. Freely scalable quantum technologies using cells of 5-to-50 qubits with very lossy and noisy photonic links. Phys. Rev. X 4, 041041 (2014).

    Google Scholar 

  21. Wiesner, S. Conjugate coding. ACM SIGACT News 15, 78–88 (1983).

    Article  MATH  Google Scholar 

  22. Pastawski, F., Yao, N. Y., Jiang, L., Lukin, M. D. & Cirac, J. I. Unforgeable noise-tolerant quantum tokens. Proc. Natl Acad. Sci. USA 109, 16079–16082 (2012).

    Article  ADS  Google Scholar 

  23. Hite, D. A. et al. 100-fold reduction of electric-field noise in an ion trap cleaned with in situ argon-ion-beam bombardment. Phys. Rev. Lett. 109, 103001 (2012).

    Article  ADS  Google Scholar 

  24. Deslauriers, L. et al. Scaling and suppression of anomalous heating in ion traps. Phys. Rev. Lett. 97, 103007 (2006).

    Article  ADS  Google Scholar 

  25. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010).

  26. Home, J. P. et al. Complete methods set for scalable ion trap quantum information processing. Science 325, 1227–1230 (2009).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Hanneke, D. et al. Realization of a programmable two-qubit quantum processor. Nat. Phys. 6, 13–16 (2010).

    Article  Google Scholar 

  28. Duan, L. M., Blinov, B. B., Moehring, D. L. & Monroe, C. Scalable trapped ion quantum computation with a probabilistic ion-photon mapping. Quantum Inf. Comput. 4, 165–173 (2004).

    MathSciNet  MATH  Google Scholar 

  29. Blinov, B., Moehring, D., Duan, L.-M. & Monroe, C. Observation of entanglement between a single trapped atom and a single photon. Nature 428, 153–157 (2004).

    Article  ADS  Google Scholar 

  30. Moehring, D. L. et al. Entanglement of single atom quantum bits at a distance. Nature 449, 68–71 (2007).

    Article  ADS  Google Scholar 

  31. Kurz, C. et al. Experimental protocol for high-fidelity heralded photon-to-atom quantum state transfer. Nat. Commun. 5, 5527 (2014).

    Article  Google Scholar 

  32. Ball, H., Oliver, W. D. & Biercuk, M. J. The role of master clock stability in quantum information processing. Nat. Quantum Inf. 2, 16033 (2016).

    Article  Google Scholar 

  33. Bylander, J. et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys. 7, 565–570 (2011).

    Article  Google Scholar 

  34. Knill, E. et al. Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008).

    Article  ADS  Google Scholar 

  35. Kielpinski, D., Kafri, D., Woolley, M. J., Milburn, G. J. & Taylor, J. M. Quantum interface between an electrical circuit and a single atom. Phys. Rev. Lett. 108, 130504 (2012).

    Article  ADS  Google Scholar 

  36. Daniilidis, N., Gorman, D. J., Tian, L. & Hffner, H. Quantum information processing with trapped electrons and superconducting electronics. New J. Phys. 251, 073017 (2013).

    Article  Google Scholar 

  37. Ozeri, R. et al. Hyperfine coherence in the presence of spontaneous photon scattering. Phys. Rev. Lett. 95, 030403 (2005).

    Article  ADS  Google Scholar 

  38. Uys, H. et al. Decoherence due to elastic Rayleigh scattering. Phys. Rev. Lett. 105, 200401 (2010).

    Article  ADS  Google Scholar 

  39. Campbell, W. et al. Ultrafast gates for single atomic qubits. Phys. Rev. Lett. 105, 090502 (2010).

    Article  ADS  Google Scholar 

  40. Fisk, P. T., Sellars, M. J., Lawn, M. A. & Coles, G. Accurate measurement of the 12.6 GHz clock transition in trapped 171Yb+ ions. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 344–354 (1997).

    Article  Google Scholar 

  41. Uhrig, G. S. Exact results on dynamical decoupling by π pulses in quantum information processes. New J. Phys. 10, 083024 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China under grant 2016YFA0301900 (no. 2016YFA0301901) and the National Natural Science Foundation of China grants 11374178, 11504197 and 11574002.

Author information

Authors and Affiliations

Authors

Contributions

Y.W. and D.Y. developed the experimental system. Y.W., with the participation of M.U. and D.Y., collected and analysed the data. J.Z. and S.A. provided technical support. M.L., J.-N.Z., L.-M.D. and D.Y. provided theoretical support. K.K. supervised the project. All authors contributed to writing the manuscript.

Corresponding authors

Correspondence to Dahyun Yum or Kihwan Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A correction to this article is available online at https://doi.org/10.1038/s41566-017-0052-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Um, M., Zhang, J. et al. Single-qubit quantum memory exceeding ten-minute coherence time. Nature Photon 11, 646–650 (2017). https://doi.org/10.1038/s41566-017-0007-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-017-0007-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing