In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon

Abstract

Silicon is an excellent material for microelectronics and integrated photonics1,2,3, with untapped potential for mid-infrared optics4. Despite broad recognition of the importance of the third dimension5,6, current lithography methods do not allow the fabrication of photonic devices and functional microelements directly inside silicon chips. Even relatively simple curved geometries cannot be realized with techniques like reactive ion etching. Embedded optical elements7, electronic devices and better electronic–photonic integration are lacking8. Here, we demonstrate laser-based fabrication of complex 3D structures deep inside silicon using 1-µm-sized dots and rod-like structures of adjustable length as basic building blocks. The laser-modified Si has an optical index different to that in unmodified parts, enabling the creation of numerous photonic devices. Optionally, these parts can be chemically etched to produce desired 3D shapes. We exemplify a plethora of subsurface—that is, ‘in-chip’—microstructures for microfluidic cooling of chips, vias, micro-electro-mechanical systems, photovoltaic applications and photonic devices that match or surpass corresponding state-of-the-art device performances.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Creation of 3D index modification inside Si.
Fig. 2: Selective chemical etching and theoretical modelling.
Fig. 3: Functional in-chip optical elements and information storage.
Fig. 4: Sculpting of 3D arbitrary micro-architectures.

References

  1. 1.

    Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nat. Photon. 4, 535–544 (2010).

    Article  ADS  Google Scholar 

  2. 2.

    Priolo, F., Gregorkiewicz, T., Galli, M. & Krauss, T. F. Silicon nanostructures for photonics and photovoltaics. Nat. Nanotech. 9, 19–32 (2014).

    Article  ADS  Google Scholar 

  3. 3.

    Lim, A. E.-J. et al. Review of silicon photonics foundry efforts. IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).

    Article  Google Scholar 

  4. 4.

    Soref, R. Mid-infrared photonics in silicon and germanium. Nat. Photon. 4, 495–497 (2010).

    Article  ADS  Google Scholar 

  5. 5.

    Emma, P. G. & Kursun, E. Is 3D chip technology the next growth engine for performance improvement? IBM J. Res. Dev. 52, 541–552 (2008).

    Article  Google Scholar 

  6. 6.

    Wong, H.-S. P. & Salahuddin, S. Memory leads the way to better computing. Nat. Nanotech. 10, 191–194 (2015).

    Article  ADS  Google Scholar 

  7. 7.

    Beresna, M., Gecevičius, M. & Kazansky, P. G. Ultrafast laser direct writing and nanostructuring in transparent materials. Adv. Opt. Photon. 6, 293–339 (2014).

    Article  Google Scholar 

  8. 8.

    Sherwood-Droz, N. & Lipson, M. Scalable 3D dense integration of photonics on bulk silicon. Opt. Express. 19, 17758–17765 (2011).

    Article  ADS  Google Scholar 

  9. 9.

    Nejadmalayeri, A. H., Herman, P. R., Burghoff, J., Will, M., Nolte, S. & Tünnermann, A. Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses. Opt. Lett. 30, 964–966 (2005).

    Article  ADS  Google Scholar 

  10. 10.

    Pavlov, I., Dülgergil, E., Ilbey, E. & Ilday, F. Ö. Conference on Lasers and Electro-Optics 2012, CTu2M.5 (Optical Society, San Jose, CA, USA, 2012).

  11. 11.

    Pavlov, I., Dülgergil, E., Ilbey, E. & Ilday, F. Ö. Diffraction-limited, 10-W, 5-ns, 100-kHz, all-fiber laser at 1.55 μm. Opt. Lett. 39, 2695–2698 (2014).

    Article  ADS  Google Scholar 

  12. 12.

    Truby, R. L. & Lewis, J. A. Printing soft matter in three dimensions. Nature 540, 371–378 (2016).

    Article  ADS  Google Scholar 

  13. 13.

    Öktem, B. et al. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nat. Photon. 7, 897–901 (2013).

    Article  ADS  Google Scholar 

  14. 14.

    Arecchi, F. T., Boccaletti, S. & Ramazza, P. L. Pattern formation and competition in nonlinear optics. Phys. Rep. 318, 1–83 (1999).

    Article  ADS  Google Scholar 

  15. 15.

    Kerse, C. et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature 537, 84–88 (2016).

    Article  ADS  Google Scholar 

  16. 16.

    Ilday, S. et al. Multiscale self-assembly of silicon quantum dots into an anisotropic three-dimensional random network. Nano Lett. 16, 1942–1948 (2016).

    Article  ADS  Google Scholar 

  17. 17.

    Penrose, L. S. & Penrose, R. Impossible objects: a special type of visual illusion. Br. J. Psychol. 49, 31–33 (1958).

    Article  Google Scholar 

  18. 18.

    Bekenstein, R., Schley, R., Mutzafi, M., Rotschild, C. & Segev, M. Optical simulations of gravitational effects in the Newton–Schrodinger system. Nat. Phys. 11, 872–878 (2015).

    Article  Google Scholar 

  19. 19.

    Brodeur, A. et al. Moving focus in the propagation of ultrashort laser pulses in air. Opt. Lett. 22, 304–306 (1997).

    Article  ADS  Google Scholar 

  20. 20.

    Yang, W., Kazansky, P. G. & Svirko, Y. P. Non-reciprocal ultrafast laser writing. Nat. Photon. 2, 99–104 (2008).

    Article  ADS  Google Scholar 

  21. 21.

    Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Article  Google Scholar 

  22. 22.

    Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S. & Watts, M. R. Large-scale nanophotonic phased array. Nature 493, 195–199 (2013).

    Article  ADS  Google Scholar 

  23. 23.

    Zheng, G. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotech. 10, 308–312 (2015).

    Article  ADS  Google Scholar 

  24. 24.

    Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article  ADS  Google Scholar 

  25. 25.

    Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photon. 10, 60–65 (2016).

    Article  ADS  Google Scholar 

  26. 26.

    Larouche, S., Tsai, Y.-J., Tyler, T., Jokerst, N. M. & Smith, D. R. Infrared metamaterial phase holograms. Nat. Mater. 11, 450–454 (2012).

    Article  ADS  Google Scholar 

  27. 27.

    Wu, C. et al. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances. Nat. Commun. 5, 3892 (2014).

    Google Scholar 

  28. 28.

    Li, X. et al. Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat. Commun. 6, 6984 (2015).

    Article  Google Scholar 

  29. 29.

    Dang, B., Bakir, M. S., Sekar, D. C., King, C. R. Jr & Meindl, J. D. Integrated microfluidic cooling and interconnects for 2D and 3D chips. IEEE Trans. Adv. Pack. 33, 79–87 (2010).

    Article  Google Scholar 

  30. 30.

    Ball, P. Feeling the heat. Nature 492, 174–176 (2012).

    Article  ADS  Google Scholar 

  31. 31.

    Motoyoshi, M. Through-silicon via (TSV). Proc. IEEE 97, 43–48 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported partially by a European Research Council (ERC) Consolidator Grant ERC-617521 NLL, EU Marie Curie Fellowship 660769 SMILE and TÜBITAK under project 113M930. The authors acknowledge support from the Structural Characterization Facilities at IBC of the HZDR. The authors thank H. Volkan Hünerli for discussions of the chemical procedure.

Author information

Affiliations

Authors

Contributions

O.T. and F.Ö.I designed the research and interpreted the results, with help from S.I. Experiments were performed by A.T., O.T., G.M. and Ö.Y. The customized laser was built by I.P. The analytical model was developed by P.E., O.T. and F.Ö.I. Numerical simulations were performed by A.T., O.T. and E.E. Chemical etching was developed by T.Ç., M.Z.B., A.B. and R.T. Material analyses were performed by R.H. and S.I. Waveguide characterization and optical coherence tomography imaging were performed by D.K.K. and S.T., respectively.

Corresponding authors

Correspondence to Onur Tokel or F. Ömer Ilday.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon

Supplementary Video 1

Infrared transmission microscopy of subsurface structures in Si.

Supplementary Video 2

3D projection of a subsurface Fresnel hologram.

Supplementary Video 3

Multi-level structures in Si.

Supplementary Video 4

Silicon in-chip cooling with embedded microfluidic channels.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tokel, O., Turnalı, A., Makey, G. et al. In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon. Nature Photon 11, 639–645 (2017). https://doi.org/10.1038/s41566-017-0004-4

Download citation

Further reading