Silicon is an excellent material for microelectronics and integrated photonics1,2,3, with untapped potential for mid-infrared optics4. Despite broad recognition of the importance of the third dimension5,6, current lithography methods do not allow the fabrication of photonic devices and functional microelements directly inside silicon chips. Even relatively simple curved geometries cannot be realized with techniques like reactive ion etching. Embedded optical elements7, electronic devices and better electronic–photonic integration are lacking8. Here, we demonstrate laser-based fabrication of complex 3D structures deep inside silicon using 1-µm-sized dots and rod-like structures of adjustable length as basic building blocks. The laser-modified Si has an optical index different to that in unmodified parts, enabling the creation of numerous photonic devices. Optionally, these parts can be chemically etched to produce desired 3D shapes. We exemplify a plethora of subsurface—that is, ‘in-chip’—microstructures for microfluidic cooling of chips, vias, micro-electro-mechanical systems, photovoltaic applications and photonic devices that match or surpass corresponding state-of-the-art device performances.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nat. Photon. 4, 535–544 (2010).

  2. 2.

    Priolo, F., Gregorkiewicz, T., Galli, M. & Krauss, T. F. Silicon nanostructures for photonics and photovoltaics. Nat. Nanotech. 9, 19–32 (2014).

  3. 3.

    Lim, A. E.-J. et al. Review of silicon photonics foundry efforts. IEEE J. Sel. Top. Quantum Electron. 20, 405–416 (2014).

  4. 4.

    Soref, R. Mid-infrared photonics in silicon and germanium. Nat. Photon. 4, 495–497 (2010).

  5. 5.

    Emma, P. G. & Kursun, E. Is 3D chip technology the next growth engine for performance improvement? IBM J. Res. Dev. 52, 541–552 (2008).

  6. 6.

    Wong, H.-S. P. & Salahuddin, S. Memory leads the way to better computing. Nat. Nanotech. 10, 191–194 (2015).

  7. 7.

    Beresna, M., Gecevičius, M. & Kazansky, P. G. Ultrafast laser direct writing and nanostructuring in transparent materials. Adv. Opt. Photon. 6, 293–339 (2014).

  8. 8.

    Sherwood-Droz, N. & Lipson, M. Scalable 3D dense integration of photonics on bulk silicon. Opt. Express. 19, 17758–17765 (2011).

  9. 9.

    Nejadmalayeri, A. H., Herman, P. R., Burghoff, J., Will, M., Nolte, S. & Tünnermann, A. Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses. Opt. Lett. 30, 964–966 (2005).

  10. 10.

    Pavlov, I., Dülgergil, E., Ilbey, E. & Ilday, F. Ö. Conference on Lasers and Electro-Optics 2012, CTu2M.5 (Optical Society, San Jose, CA, USA, 2012).

  11. 11.

    Pavlov, I., Dülgergil, E., Ilbey, E. & Ilday, F. Ö. Diffraction-limited, 10-W, 5-ns, 100-kHz, all-fiber laser at 1.55 μm. Opt. Lett. 39, 2695–2698 (2014).

  12. 12.

    Truby, R. L. & Lewis, J. A. Printing soft matter in three dimensions. Nature 540, 371–378 (2016).

  13. 13.

    Öktem, B. et al. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nat. Photon. 7, 897–901 (2013).

  14. 14.

    Arecchi, F. T., Boccaletti, S. & Ramazza, P. L. Pattern formation and competition in nonlinear optics. Phys. Rep. 318, 1–83 (1999).

  15. 15.

    Kerse, C. et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature 537, 84–88 (2016).

  16. 16.

    Ilday, S. et al. Multiscale self-assembly of silicon quantum dots into an anisotropic three-dimensional random network. Nano Lett. 16, 1942–1948 (2016).

  17. 17.

    Penrose, L. S. & Penrose, R. Impossible objects: a special type of visual illusion. Br. J. Psychol. 49, 31–33 (1958).

  18. 18.

    Bekenstein, R., Schley, R., Mutzafi, M., Rotschild, C. & Segev, M. Optical simulations of gravitational effects in the Newton–Schrodinger system. Nat. Phys. 11, 872–878 (2015).

  19. 19.

    Brodeur, A. et al. Moving focus in the propagation of ultrashort laser pulses in air. Opt. Lett. 22, 304–306 (1997).

  20. 20.

    Yang, W., Kazansky, P. G. & Svirko, Y. P. Non-reciprocal ultrafast laser writing. Nat. Photon. 2, 99–104 (2008).

  21. 21.

    Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

  22. 22.

    Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S. & Watts, M. R. Large-scale nanophotonic phased array. Nature 493, 195–199 (2013).

  23. 23.

    Zheng, G. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotech. 10, 308–312 (2015).

  24. 24.

    Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

  25. 25.

    Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photon. 10, 60–65 (2016).

  26. 26.

    Larouche, S., Tsai, Y.-J., Tyler, T., Jokerst, N. M. & Smith, D. R. Infrared metamaterial phase holograms. Nat. Mater. 11, 450–454 (2012).

  27. 27.

    Wu, C. et al. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances. Nat. Commun. 5, 3892 (2014).

  28. 28.

    Li, X. et al. Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat. Commun. 6, 6984 (2015).

  29. 29.

    Dang, B., Bakir, M. S., Sekar, D. C., King, C. R. Jr & Meindl, J. D. Integrated microfluidic cooling and interconnects for 2D and 3D chips. IEEE Trans. Adv. Pack. 33, 79–87 (2010).

  30. 30.

    Ball, P. Feeling the heat. Nature 492, 174–176 (2012).

  31. 31.

    Motoyoshi, M. Through-silicon via (TSV). Proc. IEEE 97, 43–48 (2009).

Download references


This work was supported partially by a European Research Council (ERC) Consolidator Grant ERC-617521 NLL, EU Marie Curie Fellowship 660769 SMILE and TÜBITAK under project 113M930. The authors acknowledge support from the Structural Characterization Facilities at IBC of the HZDR. The authors thank H. Volkan Hünerli for discussions of the chemical procedure.

Author information

Author notes

  1. Onur Tokel and Ahmet Turnalı contributed equally to this work.


  1. Department of Physics, Bilkent University, Ankara, 06800, Turkey

    • Onur Tokel
    • , Ghaith Makey
    • , Parviz Elahi
    • , Ihor Pavlov
    • , Serim Ilday
    •  & F. Ömer Ilday
  2. Department of Electrical and Electronics Engineering, Bilkent University, Ankara, 06800, Turkey

    • Ahmet Turnalı
    • , Özgün Yavuz
    • , Denizhan Koray Kesim
    •  & F. Ömer Ilday
  3. The Center for Solar Energy Research and Applications, Middle East Technical University, Ankara, 06800, Turkey

    • Tahir Çolakoğlu
    • , Mona Zolfaghari Borra
    • , Alpan Bek
    •  & Raşit Turan
  4. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

    • Emre Ergeçen
  5. Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328, Dresden, Germany

    • René Hübner
  6. Micro and Nanotechnology Graduate Program, Middle East Technical University, Ankara, 06800, Turkey

    • Mona Zolfaghari Borra
    • , Alpan Bek
    •  & Raşit Turan
  7. Department of Physics, Middle East Technical University, Ankara, 06800, Turkey

    • Alpan Bek
    •  & Raşit Turan
  8. Harvard Medical School, Boston, MA, 02115, USA

    • Serhat Tozburun
  9. Izmir International Biomedicine and Genome Institute, Izmir, 35340, Turkey

    • Serhat Tozburun
  10. UNAM – National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey

    • F. Ömer Ilday


  1. Search for Onur Tokel in:

  2. Search for Ahmet Turnalı in:

  3. Search for Ghaith Makey in:

  4. Search for Parviz Elahi in:

  5. Search for Tahir Çolakoğlu in:

  6. Search for Emre Ergeçen in:

  7. Search for Özgün Yavuz in:

  8. Search for René Hübner in:

  9. Search for Mona Zolfaghari Borra in:

  10. Search for Ihor Pavlov in:

  11. Search for Alpan Bek in:

  12. Search for Raşit Turan in:

  13. Search for Denizhan Koray Kesim in:

  14. Search for Serhat Tozburun in:

  15. Search for Serim Ilday in:

  16. Search for F. Ömer Ilday in:


O.T. and F.Ö.I designed the research and interpreted the results, with help from S.I. Experiments were performed by A.T., O.T., G.M. and Ö.Y. The customized laser was built by I.P. The analytical model was developed by P.E., O.T. and F.Ö.I. Numerical simulations were performed by A.T., O.T. and E.E. Chemical etching was developed by T.Ç., M.Z.B., A.B. and R.T. Material analyses were performed by R.H. and S.I. Waveguide characterization and optical coherence tomography imaging were performed by D.K.K. and S.T., respectively.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Onur Tokel or F. Ömer Ilday.

Electronic supplementary material

  1. Supplementary Information

    In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon

  2. Supplementary Video 1

    Infrared transmission microscopy of subsurface structures in Si.

  3. Supplementary Video 2

    3D projection of a subsurface Fresnel hologram.

  4. Supplementary Video 3

    Multi-level structures in Si.

  5. Supplementary Video 4

    Silicon in-chip cooling with embedded microfluidic channels.

About this article

Publication history






Further reading