Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials


Optical communications, laser science, microscopy and metrology demand control of light polarization, which is also used as a probe of chemical and biological systems. Typically, certain polarization states of light are achieved using macroscopic anisotropic crystals. Metamaterials and metasurfaces have recently been developed to act as efficient passive polarization components of subwavelength dimensions1,2,3,4. However, active polarization control has so far been mainly limited to microwave and terahertz wavelengths5,6,7. Here, we demonstrate all-optical switching of visible light polarization, achieving up to 60° rotation of the polarization ellipse at picosecond timescales. This is accomplished both under control illumination and in a self-phase modulation regime, where the intensity of light affects its own polarization state, by exploiting the strong anisotropy and nonlinear response of a hyperbolic metamaterial3,8,9,10. The effects are general for any resonant, anisotropic, nonlinear nanoantennas and metasurfaces and are suited to numerous photonic applications and material characterization techniques where ultrafast polarization shaping is required.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principle of polarization synthesis with anisotropic metamaterial.
Fig. 2: Polarized transmission dynamics.
Fig. 3: Dynamics of the polarization state of transmitted light.
Fig. 4: Power dependence of polarization switching.


  1. Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009).

    Article  ADS  Google Scholar 

  2. Plum, E. et al. Metamaterial with negative index due to chirality. Phys. Rev. B 79, 035407 (2009).

    Article  ADS  Google Scholar 

  3. Ginzburg, P. et al. Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials. Opt. Express 21, 14907–14917 (2013).

    Article  ADS  Google Scholar 

  4. Zhao, Y. & Alù, A. Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys. Rev. B 84, 205428 (2011).

    Article  ADS  Google Scholar 

  5. Mousavi, S. A., Plum, E., Shi, J. H. & Zheludev, N. I. Coherent control of optical polarization effects in metamaterials. Sci. Rep. 5, 8977 (2015).

    Article  ADS  Google Scholar 

  6. Zhang, S. et al. Photoinduced handedness switching in terahertz chiral metamolecules. Nat. Commun. 3, 942 (2012).

    Article  Google Scholar 

  7. Kamaraju, N. et al. Subcycle control of terahertz waveform polarization using all-optically induced transient metamaterials. Light Sci. Appl. 3, e155 (2014).

    Article  Google Scholar 

  8. Poddubny, A., Iorsh, I., Belov, P. & Kivshar, Y. Hyperbolic metamaterials. Nat. Photon. 7, 948–957 (2013).

    Article  ADS  Google Scholar 

  9. Wurtz, G. A. et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nat. Nanotech. 6, 107–111 (2011).

    Article  ADS  Google Scholar 

  10. Neira, A. D. et al. Eliminating material constraints for nonlinearity with plasmonic metamaterials. Nat. Commun. 6, 7757 (2015).

    Article  Google Scholar 

  11. Schäferling, M., Dregely, D., Hentschel, M. & Giessen, H. Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures. Phys. Rev. X 2, 031010 (2012).

    Google Scholar 

  12. Zhao, R., Zhang, L., Zhou, J., Koschny, T. & Soukoulis, C. M. Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index. Phys. Rev. B 83, 035105 (2011).

    Article  ADS  Google Scholar 

  13. Decker, M., Zhao, R., Soukoulis, C. M., Linden, S. & Wegener, M. Twisted split-ring-resonator photonic metamaterial with huge optical activity. Opt. Lett. 35, 1593–1595 (2010).

    Article  ADS  Google Scholar 

  14. Zhu, H., Yin, X., Chen, L., Zhu, Z. & Li, X. Manipulating light polarizations with a hyperbolic metamaterial waveguide. Opt. Lett. 40, 4595–4598 (2015).

    Article  ADS  Google Scholar 

  15. Ren, M., Plum, E., Xu, J. & Zheludev, N. I. Giant nonlinear optical activity in a plasmonic metamaterial. Nat. Commun. 3, 833 (2012).

    Article  ADS  Google Scholar 

  16. Genevet, P. et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Appl. Phys. Lett. 100, 013101 (2012).

    Article  ADS  Google Scholar 

  17. Yu, N. et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett. 12, 6328–6333 (2012).

    Article  ADS  Google Scholar 

  18. Ding, F., Wang, Z., He, S., Shalaev, V. M. & Kildishev, A. V. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. ACS Nano 9, 4111–4119 (2015).

    Article  Google Scholar 

  19. Zhu, B. et al. Polarization modulation by tunable electromagnetic metamaterial reflector/absorber. Opt. Express 18, 23196–23203 (2010).

    Article  ADS  Google Scholar 

  20. Cui, J. H. et al. Dynamical manipulation of electromagnetic polarization using anisotropic meta-mirror. Sci. Rep. 6, 30771 (2016).

    Article  ADS  Google Scholar 

  21. Wang, D. C. et al. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface. Sci. Rep. 5, 15020 (2015).

    Article  ADS  Google Scholar 

  22. Kan, T. et al. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals. Nat. Commun. 6, 8422 (2015).

    Article  Google Scholar 

  23. Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light 7th edn (Cambridge Univ. Press, Cambridge, UK, 1999).

  24. Vasilantonakis, N., Nasir, M. E., Dickson, W., Wurtz, G. A. & Zayats, A. V. Bulk plasmon–polaritons in hyperbolic nanorod metamaterial waveguides. Laser Photon. Rev. 9, 345–353 (2015).

    Article  Google Scholar 

  25. Markowicz, P. P. et al. Phase-sensitive time-modulated surface plasmon resonance polarimetry for wide dynamic range biosensing. Opt. Express 15, 1745–1754 (2007).

    Article  ADS  Google Scholar 

  26. Svedendahl, M., Verre, R. & Kall, M. Refractometric biosensing based on optical phase flips in sparse and short-range-ordered nanoplasmonic layers. Light Sci. Appl. 3, e220 (2014).

    Article  Google Scholar 

Download references


This work has been supported, in part, by the EPSRC (UK) and the ERC iPLASMM project (321268). A.V.Z. acknowledges support from the Royal Society and the Wolfson Foundation. G.A.W. acknowledges support from the EC FP7 project 304179 (Marie Curie Actions). F.J.R.-F. acknowledges financial support from the ERC-2016-StG-714151 PSINFONI project. R.M.C.-C acknowledges the support of CONACyT.

Author information

Authors and Affiliations



L.H.N., F.J.R.-F. and A.V.Z. developed the idea and designed the experiments. L.H.N., G.A.W. and N.O. performed the experiments. L.H.N. and F.J.R.-F. performed numerical simulations and data processing. M.E.N. and R.M.C.-C. fabricated the metamaterial samples. L.H.N., F.J.R.-F. and A.V.Z. wrote the manuscript. All authors commented on the manuscript.

Corresponding author

Correspondence to Luke H. Nicholls.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Additional fabrication, measurement, modelling and other details.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicholls, L.H., Rodríguez-Fortuño, F.J., Nasir, M.E. et al. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials. Nature Photon 11, 628–633 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing