Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials

  • Nature Photonicsvolume 11pages628633 (2017)
  • doi:10.1038/s41566-017-0002-6
  • Download Citation


Optical communications, laser science, microscopy and metrology demand control of light polarization, which is also used as a probe of chemical and biological systems. Typically, certain polarization states of light are achieved using macroscopic anisotropic crystals. Metamaterials and metasurfaces have recently been developed to act as efficient passive polarization components of subwavelength dimensions1,2,3,4. However, active polarization control has so far been mainly limited to microwave and terahertz wavelengths5,6,7. Here, we demonstrate all-optical switching of visible light polarization, achieving up to 60° rotation of the polarization ellipse at picosecond timescales. This is accomplished both under control illumination and in a self-phase modulation regime, where the intensity of light affects its own polarization state, by exploiting the strong anisotropy and nonlinear response of a hyperbolic metamaterial3,8,9,10. The effects are general for any resonant, anisotropic, nonlinear nanoantennas and metasurfaces and are suited to numerous photonic applications and material characterization techniques where ultrafast polarization shaping is required.

  • Subscribe to Nature Photonics for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009).

  2. 2.

    Plum, E. et al. Metamaterial with negative index due to chirality. Phys. Rev. B 79, 035407 (2009).

  3. 3.

    Ginzburg, P. et al. Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials. Opt. Express 21, 14907–14917 (2013).

  4. 4.

    Zhao, Y. & Alù, A. Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys. Rev. B 84, 205428 (2011).

  5. 5.

    Mousavi, S. A., Plum, E., Shi, J. H. & Zheludev, N. I. Coherent control of optical polarization effects in metamaterials. Sci. Rep. 5, 8977 (2015).

  6. 6.

    Zhang, S. et al. Photoinduced handedness switching in terahertz chiral metamolecules. Nat. Commun. 3, 942 (2012).

  7. 7.

    Kamaraju, N. et al. Subcycle control of terahertz waveform polarization using all-optically induced transient metamaterials. Light Sci. Appl. 3, e155 (2014).

  8. 8.

    Poddubny, A., Iorsh, I., Belov, P. & Kivshar, Y. Hyperbolic metamaterials. Nat. Photon. 7, 948–957 (2013).

  9. 9.

    Wurtz, G. A. et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nat. Nanotech. 6, 107–111 (2011).

  10. 10.

    Neira, A. D. et al. Eliminating material constraints for nonlinearity with plasmonic metamaterials. Nat. Commun. 6, 7757 (2015).

  11. 11.

    Schäferling, M., Dregely, D., Hentschel, M. & Giessen, H. Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures. Phys. Rev. X 2, 031010 (2012).

  12. 12.

    Zhao, R., Zhang, L., Zhou, J., Koschny, T. & Soukoulis, C. M. Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index. Phys. Rev. B 83, 035105 (2011).

  13. 13.

    Decker, M., Zhao, R., Soukoulis, C. M., Linden, S. & Wegener, M. Twisted split-ring-resonator photonic metamaterial with huge optical activity. Opt. Lett. 35, 1593–1595 (2010).

  14. 14.

    Zhu, H., Yin, X., Chen, L., Zhu, Z. & Li, X. Manipulating light polarizations with a hyperbolic metamaterial waveguide. Opt. Lett. 40, 4595–4598 (2015).

  15. 15.

    Ren, M., Plum, E., Xu, J. & Zheludev, N. I. Giant nonlinear optical activity in a plasmonic metamaterial. Nat. Commun. 3, 833 (2012).

  16. 16.

    Genevet, P. et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Appl. Phys. Lett. 100, 013101 (2012).

  17. 17.

    Yu, N. et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett. 12, 6328–6333 (2012).

  18. 18.

    Ding, F., Wang, Z., He, S., Shalaev, V. M. & Kildishev, A. V. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. ACS Nano 9, 4111–4119 (2015).

  19. 19.

    Zhu, B. et al. Polarization modulation by tunable electromagnetic metamaterial reflector/absorber. Opt. Express 18, 23196–23203 (2010).

  20. 20.

    Cui, J. H. et al. Dynamical manipulation of electromagnetic polarization using anisotropic meta-mirror. Sci. Rep. 6, 30771 (2016).

  21. 21.

    Wang, D. C. et al. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface. Sci. Rep. 5, 15020 (2015).

  22. 22.

    Kan, T. et al. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals. Nat. Commun. 6, 8422 (2015).

  23. 23.

    Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light 7th edn (Cambridge Univ. Press, Cambridge, UK, 1999).

  24. 24.

    Vasilantonakis, N., Nasir, M. E., Dickson, W., Wurtz, G. A. & Zayats, A. V. Bulk plasmon–polaritons in hyperbolic nanorod metamaterial waveguides. Laser Photon. Rev. 9, 345–353 (2015).

  25. 25.

    Markowicz, P. P. et al. Phase-sensitive time-modulated surface plasmon resonance polarimetry for wide dynamic range biosensing. Opt. Express 15, 1745–1754 (2007).

  26. 26.

    Svedendahl, M., Verre, R. & Kall, M. Refractometric biosensing based on optical phase flips in sparse and short-range-ordered nanoplasmonic layers. Light Sci. Appl. 3, e220 (2014).

Download references


This work has been supported, in part, by the EPSRC (UK) and the ERC iPLASMM project (321268). A.V.Z. acknowledges support from the Royal Society and the Wolfson Foundation. G.A.W. acknowledges support from the EC FP7 project 304179 (Marie Curie Actions). F.J.R.-F. acknowledges financial support from the ERC-2016-StG-714151 PSINFONI project. R.M.C.-C acknowledges the support of CONACyT.

Author information

Author notes

    • Nicolas Olivier

    Present address: Department of Physics, The University of Sheffield, Sheffield, S10 2TN, UK

    • Gregory A. Wurtz

    Present address: Department of Physics, University of North Florida, Jacksonville, FL, 32224, USA


  1. Department of Physics, King’s College London, Strand, London, WC2R 2LS, UK

    • Luke H. Nicholls
    • , Francisco J. Rodríguez-Fortuño
    • , Mazhar E. Nasir
    • , R. Margoth Córdova-Castro
    • , Nicolas Olivier
    • , Gregory A. Wurtz
    •  & Anatoly V. Zayats


  1. Search for Luke H. Nicholls in:

  2. Search for Francisco J. Rodríguez-Fortuño in:

  3. Search for Mazhar E. Nasir in:

  4. Search for R. Margoth Córdova-Castro in:

  5. Search for Nicolas Olivier in:

  6. Search for Gregory A. Wurtz in:

  7. Search for Anatoly V. Zayats in:


L.H.N., F.J.R.-F. and A.V.Z. developed the idea and designed the experiments. L.H.N., G.A.W. and N.O. performed the experiments. L.H.N. and F.J.R.-F. performed numerical simulations and data processing. M.E.N. and R.M.C.-C. fabricated the metamaterial samples. L.H.N., F.J.R.-F. and A.V.Z. wrote the manuscript. All authors commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Luke H. Nicholls.

Electronic supplementary material

  1. Supplementary Information

    Additional fabrication, measurement, modelling and other details.