Giant light-harvesting nanoantenna for single-molecule detection in ambient light

A Publisher Correction to this article was published on 12 January 2018

This article has been updated


Here, we explore the enhancement of single-molecule emission by a polymeric nanoantenna that can harvest energy from thousands of donor dyes to a single acceptor. In this nanoantenna, the cationic dyes are brought together, in very close proximity, using bulky counterions, thus enabling ultrafast diffusion of excitation energy (≤30 fs) with minimal losses. Our 60 nm nanoparticles containing >10,000 rhodamine-based donor dyes can efficiently transfer energy to 1–2 acceptors, resulting in an antenna effect of ~1,000. Therefore, single Cy5-based acceptors become 25-fold brighter than quantum dots QD655. This unprecedented amplification of the acceptor dye emission enables observation of single molecules at illumination powers (1–10 mW cm−2) that are >10,000-fold lower than typically required in single-molecule measurements. Finally, using a basic set-up, which includes a ×20 air objective and a scalable complementary metal-oxide–semiconductor camera, we could detect single Cy5 molecules by simply shining divergent light on the sample at powers equivalent to sunlight.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Concept of the organic nanoantenna.
Fig. 2: Spectroscopic characterization of organic nanoantennas.
Fig. 3: TEM and fluorescence microscopy images of individual nanoantennas.
Fig. 4: Fluorescence spectra and antenna effect of FRET NPs.
Fig. 5: Single-particle evaluation of nanoantennas.

Change history

  • 12 January 2018

    Owing to a technical error, the wrong version of the Supplementary Information was published for this Article; the equation E = xcoupled donors × ElocalFRET related to Supplementary Table 6 appeared incorrectly. This error has now been corrected.


  1. 1.

    Holzmeister, P., Acuna, G. P., Grohmann, D. & Tinnefeld, P. Breaking the concentration limit of optical single-molecule detection. Chem. Soc. Rev. 43, 1014–1028 (2014).

    Article  Google Scholar 

  2. 2.

    Sauer, M., Hofkens, J. & Enderlein, J. Handbook of Fluorescence Spectroscopy and Imaging: From Ensemble to Single Molecules (Wiley-VCH, Weinheim, 2011).

    Google Scholar 

  3. 3.

    Magidson, V. & Khodjakov, A. in Methods in Cell Biology Vol. 114 (eds S. Greenfield & E. W. David) 545–560 (Academic, 2013).

  4. 4.

    Dixit, R. & Cyr, R. Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy. Plant J. 36, 280–290 (2003).

    Article  Google Scholar 

  5. 5.

    Gerhardt, I., Mai, L. J., Lamas-Linares, A. & Kurtsiefer, C. Detection of single molecules illuminated by a light-emitting diode. Sensors 11, 905–916 (2011).

    Article  Google Scholar 

  6. 6.

    Wei, Q. S. et al. Fluorescent imaging of single nanoparticles and viruses on a smart phone. ACS Nano 7, 9147–9155 (2013).

    Article  Google Scholar 

  7. 7.

    Prakash, H. P. G. J. Solar Energy: Fundamentals and Applications (Tata McGraw-Hill, New Delhi, 2000).

    Google Scholar 

  8. 8.

    Novotny, L. & van Hulst, N. Antennas for light. Nat. Photon. 5, 83–90 (2011).

    ADS  Article  Google Scholar 

  9. 9.

    Su, L. et al. Super-resolution localization and defocused fluorescence microscopy on resonantly coupled single-molecule, single-nanorod hybrids. ACS Nano 10, 2455–2466 (2016).

    Article  Google Scholar 

  10. 10.

    Kinkhabwala, A. et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photon. 3, 654–657 (2009).

    ADS  Article  Google Scholar 

  11. 11.

    Garcia-Parajo, M. F. Optical antennas focus in on biology. Nat. Photon. 2, 201–203 (2008).

    ADS  Article  Google Scholar 

  12. 12.

    Tinnefeld, P. Single-molecule detection: breaking the concentration barrier. Nat. Nanotech. 8, 480–482 (2013).

    ADS  Article  Google Scholar 

  13. 13.

    Acuna, G. P. et al. Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 338, 506–510 (2012).

    ADS  Article  Google Scholar 

  14. 14.

    Puchkova, A. et al. DNA origami nanoantennas with over 5000-fold fluorescence enhancement and single-molecule detection at 25 μM. Nano Lett. 15, 8354–8359 (2015).

    ADS  Article  Google Scholar 

  15. 15.

    Yuan, H. F., Khatua, S., Zijlstra, P., Yorulmaz, M. & Orrit, M. Thousand-fold enhancement of single-molecule fluorescence near a single gold nanorod. Angew. Chem. Int. Ed. 52, 1217–1221 (2013).

    Article  Google Scholar 

  16. 16.

    Scholes, G. D., Fleming, G. R., Olaya-Castro, A. & Van Grondelle, R. Lessons from nature about solar light harvesting. Nat. Chem. 3, 763–774 (2011).

    Article  Google Scholar 

  17. 17.

    Gartzia-Rivero, L., Banuelos, J. & Lopez-Arbeloa, I. Excitation energy transfer in artificial antennas: from photoactive materials to molecular assemblies. Int. Rev. Phys. Chem. 34, 515–556 (2015).

    Article  Google Scholar 

  18. 18.

    Tian, Z. Y., Yu, J. B., Wu, C. F., Szymanski, C. & McNeill, J. Amplified energy transfer in conjugated polymer nanoparticle tags and sensors. Nanoscale 2, 1999–2011 (2010).

    ADS  Article  Google Scholar 

  19. 19.

    Yeo, H., Tanaka, K. & Chujo, Y. Effective light-harvesting antennae based on BODIPY-tethered cardo polyfluorenes via rapid energy transferring and low concentration quenching. Macromolecules 46, 2599–2605 (2013).

    ADS  Article  Google Scholar 

  20. 20.

    Thomas Iii, S. W., Joly, G. D. & Swager, T. M. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 107, 1339–1386 (2007).

    Article  Google Scholar 

  21. 21.

    Galindo, J. F. et al. Dynamics of energy transfer in a conjugated dendrimer driven by ultrafast localization of excitations. J. Am. Chem. Soc. 137, 11637–11644 (2015).

    Article  Google Scholar 

  22. 22.

    Adronov, A. & Frechet, J. M. J. Light-harvesting dendrimers. Chem. Commun. 1701–1710 (2000).

  23. 23.

    Yang, J., Yoon, M. C., Yoo, H., Kim, P. & Kim, D. Excitation energy transfer in multiporphyrin arrays with cyclic architectures: towards artificial light-harvesting antenna complexes. Chem. Soc. Rev. 41, 4808–4826 (2012).

    Article  Google Scholar 

  24. 24.

    Chadha, G., Yang, Q. Z. & Zhao, Y. Self-assembled light-harvesting supercomplexes from fluorescent surface-cross-linked micelles. Chem. Commun. 51, 12939–12942 (2015).

    Article  Google Scholar 

  25. 25.

    Sun, H. C. et al. Micelle-induced self-assembling protein nanowires: versatile supramolecular scaffolds for designing the light-harvesting system. ACS Nano 10, 421–428 (2016).

    Article  Google Scholar 

  26. 26.

    Peng, H.-Q. et al. Artificial light-harvesting system based on multifunctional surface-cross-linked micelles. Angew. Chem. Int. Ed. 51, 2088–2092 (2012).

    Article  Google Scholar 

  27. 27.

    Bhattacharyya, S., Jana, B. & Patra, A. Multichromophoric organic molecules encapsulated in polymer nanoparticles for artificial light harvesting. ChemPhysChem 16, 796–804 (2015).

    Article  Google Scholar 

  28. 28.

    Winiger, C. B., Li, S. G., Kumar, G. R., Langenegger, S. M. & Haner, R. Long-distance electronic energy transfer in light-harvesting supramolecular polymers. Angew. Chem. Int. Ed. 53, 13609–13613 (2014).

    Article  Google Scholar 

  29. 29.

    Lin, H. Z. et al. Collective fluorescence blinking in linear J-aggregates assisted by long-distance exciton migration. Nano Lett. 10, 620–626 (2010).

    ADS  Article  Google Scholar 

  30. 30.

    Son, H. J. et al. Light-harvesting and ultrafast energy migration in porphyrin-based metal–organic frameworks. J. Am. Chem. Soc. 135, 862–869 (2013).

    Article  Google Scholar 

  31. 31.

    Woller, J. G., Hannestad, J. K. & Albinsson, B. Self-assembled nanoscale DNA–porphyrin complex for artificial light harvesting. J. Am. Chem. Soc. 135, 2759–2768 (2013).

    Article  Google Scholar 

  32. 32.

    Peng, H.-Q. et al. Biological applications of supramolecular assemblies designed for excitation energy transfer. Chem. Rev. 115, 7502–7542 (2015).

    Article  Google Scholar 

  33. 33.

    Reisch, A. & Klymchenko, A. S. Fluorescent polymer nanoparticles based on dyes: seeking brighter tools for bioimaging. Small 12, 1968–1992 (2016).

    Article  Google Scholar 

  34. 34.

    Reisch, A. et al. Collective fluorescence switching of counterion-assembled dyes in polymer nanoparticles. Nat. Commun. 5, 4089 (2014).

    Article  Google Scholar 

  35. 35.

    Genovese, D. et al. Energy transfer processes in dye-doped nanostructures yield cooperative and versatile fluorescent probes. Nanoscale 6, 3022–3036 (2014).

    ADS  Article  Google Scholar 

  36. 36.

    Trofymchuk, K. et al. Exploiting fast exciton diffusion in dye-doped polymer nanoparticles to engineer efficient photoswitching. J. Phys. Chem. Lett. 6, 2259–2264 (2015).

    Article  Google Scholar 

  37. 37.

    Colby, K. A. et al. Electronic energy migration on different time scales: concentration dependence of the time-resolved anisotropy and fluorescence quenching of lumogen red in poly(methyl methacrylate). J. Phys. Chem. A 114, 3471–3482 (2010).

    Article  Google Scholar 

  38. 38.

    Shulov, I. et al. Fluorinated counterion-enhanced emission of rhodamine aggregates: ultrabright nanoparticles for bioimaging and light-harvesting. Nanoscale 7, 18198–18210 (2015).

    ADS  Article  Google Scholar 

  39. 39.

    Reisch, A., Runser, A., Arntz, Y., Mely, Y. & Klymchenko, A. S. Charge-controlled nanoprecipitation as a modular approach to ultrasmall polymer nanocarriers: making bright and stable nanoparticles. ACS Nano 9, 5104–5116 (2015).

    Article  Google Scholar 

  40. 40.

    Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008).

    Article  Google Scholar 

  41. 41.

    Zhao, Q., Young, I. T. & de Jong, J. G. S. Photon budget analysis for fluorescence lifetime imaging microscopy. J. Biomed. Opt. 16, 086007 (2011).

    ADS  Article  Google Scholar 

  42. 42.

    Chen, P. Z. et al. Light-harvesting systems based on organic nanocrystals to mimic chlorosomes. Angew. Chem. Int. Ed. 55, 2759–2763 (2016).

    Article  Google Scholar 

  43. 43.

    Patra, A., Jana, B. & Bhattacharyya, S. Functionalized dye encapsulated polymer nanoparticle attached with BSA scaffold as efficient antenna materials for artificial light harvesting. Nanoscale 8, 16034–16043 (2016).

    Article  Google Scholar 

  44. 44.

    Beljonne, D., Curutchet, C., Scholes, G. D. & Silbey, R. J. Beyond Förster resonance energy transfer in biological and nanoscale systems. J. Phys. Chem. B 113, 6583–6599 (2009).

    Article  Google Scholar 

  45. 45.

    Collini, E. Spectroscopic signatures of quantum-coherent energy transfer. Chem. Soc. Rev. 42, 4932–4947 (2013).

    Article  Google Scholar 

  46. 46.

    Collini, E. & Scholes, G. D. Coherent intrachain energy migration in a conjugated polymer at room temperature. Science 323, 369–373 (2009).

    ADS  Article  Google Scholar 

  47. 47.

    Hwang, I. & Scholes, G. D. Electronic energy transfer and quantum-coherence in π-conjugated polymers. Chem. Mater. 23, 610–620 (2011).

    Article  Google Scholar 

  48. 48.

    Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

    ADS  Article  Google Scholar 

  49. 49.

    Strümpfer, J., Şener, M. & Schulten, K. How quantum coherence assists photosynthetic light-harvesting. J. Phys. Chem. Lett. 3, 536–542 (2012).

    Article  Google Scholar 

  50. 50.

    Orrit, M. & Bernard, J. Single pentacene molecules detected by fluorescence excitation in a para-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719 (1990).

    ADS  Article  Google Scholar 

  51. 51.

    Pisoni, D. S. et al. Symmetrical and asymmetrical cyanine dyes. Synthesis, spectral properties, and BSA association study. J. Org. Chem. 79, 5511–5520 (2014).

    Article  Google Scholar 

  52. 52.

    Karstens, T. & Kobs, K. Rhodamine-B and rhodamine-101 as reference substances for fluorescence quantum yield measurements. J. Phys. Chem. 84, 1871–1872 (1980).

    Article  Google Scholar 

  53. 53.

    Texier, I. et al. Cyanine-loaded lipid nanoparticles for improved in vivo fluorescence imaging. J. Biomed. Opt. 14, 054005 (2009).

    ADS  Article  Google Scholar 

  54. 54.

    Santra, K. et al. What is the best method to fit time-resolved data? A comparison of the residual minimization and the maximum likelihood techniques as applied to experimental time-correlated, single-photon counting data. J. Phys. Chem. B 120, 2484–2490 (2016).

    Article  Google Scholar 

  55. 55.

    Lakowicz, J. R. Principles of Fluorescence Spectroscopy (Springer, New York, 2006).

Download references


This work was supported by the European Research Council ERC Consolidator grant BrightSens 648528. The authors thank C. Ruhlmann from the FRISBI platform (ANR-10-INBS-05) for help with electron microscopy. K.T. was supported by a fellowship from the Ministre de la Recherche (France).

Author information




A.S.K. proposed the concept. A.S.K. and K.T. designed the experiments. K.T. performed most of the experiments and data analysis. A.R. performed electron microscopy and helped with donor NP design and some data analysis. P.D. and F.F. performed time-resolved anisotropy measurements. A.S.K. helped with single-particle microscopy. A.R., Y.M., P.G. and A.S.K. contributed materials and analysis tools. A.S.K. and K.T. wrote the manuscript.

Corresponding author

Correspondence to Andrey S. Klymchenko.

Ethics declarations

Competing interests

A European patent application has been filed under no. 17305763.9.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A correction to this article is available online at

Electronic supplementary material

Supplementary Information

Additional information on FRET calculation, spectroscopic, time-resolved and single-particle data, experiment set-up and other details.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trofymchuk, K., Reisch, A., Didier, P. et al. Giant light-harvesting nanoantenna for single-molecule detection in ambient light. Nature Photon 11, 657–663 (2017).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing