Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular-scale CO spillover on a dual-site electrocatalyst enhances methanol production from CO2 reduction

Abstract

Cobalt phthalocyanine (CoPc) is recognized for catalysing electrochemical CO2 reduction into methanol at high Faradaic efficiency but is subject to deactivation. Cobalt tetraaminophthalocyanine (CoPc-NH2) shows improved stability, but its methanol Faradaic efficiency is below 30%. This study addresses these limitations in selectivity, reactivity and stability by rationally designing a dual-site cascade catalyst. Here we quantify the local concentration of CO, a key intermediate of the reaction, near a working CoPc-NH2 catalyst and show that co-loading nickel tetramethoxyphthalocyanine (NiPc-OCH3) with CoPc-NH2 on multiwalled carbon nanotubes increases the generation and local concentration of CO. This dual-site cascade catalyst exhibits substantially higher performance than the original single-site CoPc-NH2/carbon nanotube catalyst, reaching a partial current density of 150 mA cm−2 and a Faradaic efficiency of 50% for methanol production. Kinetic analysis and in situ sum-frequency generation vibrational spectroscopy attribute this notable performance improvement to molecular-scale CO spillover from NiPc-OCH3 sites to methanol-active CoPc-NH2 sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Room for methanol production improvement by increasing local CO concentration.
Fig. 2: Dual-site cascade catalyst.
Fig. 3: CO2 reduction performance of dual-site versus single-site catalysts.
Fig. 4: Effect of intersite distance on CO spillover.
Fig. 5: In situ SFG spectroscopy probing *CO intermediates.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Xiong, H., Li, J., Wu, D., Xu, B. & Lu, Q. Benchmarking of commercial Cu catalysts in CO2 electro-reduction using a gas-diffusion type microfluidic flow electrolyzer. Chem. Commun. 59, 5615–5618 (2023).

    Article  CAS  Google Scholar 

  2. Jouny, M., Hutchings, G. S. & Jiao, F. Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nat. Catal. 2, 1062–1070 (2019).

    Article  CAS  Google Scholar 

  3. Lewis, N. S. Research opportunities to advance solar energy utilization. Science 351, aad1920 (2016).

    Article  PubMed  Google Scholar 

  4. Franco, F., Rettenmaier, C., Jeon, H. S. & Roldan Cuenya, B. Transition metal-based catalysts for the electrochemical CO2 reduction: from atoms and molecules to nanostructured materials. Chem. Soc. Rev. 49, 6884–6946 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Cao, R. Across the board: Rui Cao on electrocatalytic CO2 reduction. ChemSusChem 15, e202201788 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Wu, Y., Liang, Y. & Wang, H. Heterogeneous molecular catalysts of metal phthalocyanines for electrochemical CO2 reduction reactions. Acc. Chem. Res. 54, 3149–3159 (2021).

    Article  CAS  Google Scholar 

  7. Su, J. et al. Strain enhances the activity of molecular electrocatalysts via carbon nanotube supports. Nat. Catal. 6, 818–828 (2023).

    Article  CAS  Google Scholar 

  8. Li, J. et al. Mechanism-guided realization of selective carbon monoxide electroreduction to methanol. Nat. Synth. 2, 1194–1201 (2023).

    Article  CAS  Google Scholar 

  9. Ren, X. et al. In-situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO2 reduction to methanol. Nat. Commun. 14, 3401 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chan, T. et al. Role of mass transport in electrochemical CO2 reduction to methanol using immobilized cobalt phthalocyanine. ACS Appl. Energy Mater. 7, 3091–3098 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yao, L., Rivera-Cruz, K. E., Zimmerman, P. M., Singh, N. & McCrory, C. C. L. Electrochemical CO2 reduction to methanol by cobalt phthalocyanine: quantifying CO2 and CO binding strengths and their influence on methanol production. ACS Catal. 14, 366–372 (2023).

    Article  Google Scholar 

  12. Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Wu, Y., Hu, G., Rooney, C. L., Brudvig, G. W. & Wang, H. Heterogeneous nature of electrocatalytic CO/CO2 reduction by cobalt phthalocyanines. ChemSusChem 13, 6296–6299 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Shi, L. L., Li, M., You, B. & Liao, R. Z. Theoretical study on the electro-reduction of carbon dioxide to methanol catalyzed by cobalt phthalocyanine. Inorg. Chem. 61, 16549–16564 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Liu, X. Y., Li, B. Q., Ni, B., Wang, L. & Peng, H. J. A perspective on the electrocatalytic conversion of carbon dioxide to methanol with metallomacrocyclic catalysts. J. Energy Chem. 64, 263–275 (2022).

    Article  CAS  Google Scholar 

  16. Rooney, C. L. et al. Active sites of cobalt phthalocyanine in electrocatalytic CO2 reduction to methanol. Angew. Chem. Int. Ed. 63, e202310623 (2024).

    Article  CAS  Google Scholar 

  17. Chen, X., Wei, D. & Ahlquist, M. S. G. Aggregation and significant difference in reactivity therein: blocking the CO2-to-CH3OH reaction. Organometallics 40, 3087–3093 (2021).

    Article  CAS  Google Scholar 

  18. Tan, Y. C., Lee, K. B., Song, H. & Oh, J. Modulating local CO2 concentration as a general strategy for enhancing C–C coupling in CO2 electroreduction. Joule 4, 1104–1120 (2020).

    Article  CAS  Google Scholar 

  19. Weng, L. C., Bell, A. T. & Weber, A. Z. Modeling gas-diffusion electrodes for CO2 reduction. Phys. Chem. Chem. Phys. 20, 16973–16984 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, X. et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat. Energy 5, 684–692 (2020).

    Article  CAS  Google Scholar 

  21. Jiang, Z. et al. Molecular catalyst with near 100% selectivity for CO2 reduction in acidic electrolytes. Adv. Energy Mater. 13, 2203603 (2022).

    Article  Google Scholar 

  22. Cheon, S., Li, J. & Wang, H. In situ generated CO enables high-current CO2 reduction to methanol in a molecular catalyst layer. J. Am. Chem. Soc. 146, 16348–16354 (2024).

    Article  CAS  PubMed  Google Scholar 

  23. Xiong, M., Gao, Z. & Qin, Y. Spillover in heterogeneous catalysis: new insights and opportunities. ACS Catal. 11, 3159–3172 (2021).

    Article  CAS  Google Scholar 

  24. Xiong, M. et al. In situ tuning of electronic structure of catalysts using controllable hydrogen spillover for enhanced selectivity. Nat. Commun. 11, 4773 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ren, D., Ang, B. S.-H. & Yeo, B. S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 6, 8239–8247 (2016).

    Article  CAS  Google Scholar 

  26. Chen, J. et al. Accelerated transfer and spillover of carbon monoxide through tandem catalysis for kinetics-boosted ethylene electrosynthesis. Angew. Chem. Int. Ed. 62, e202215406 (2023).

    Article  CAS  Google Scholar 

  27. Gao, J. et al. Selective C–C coupling in carbon dioxide electroreduction via efficient spillover of intermediates as supported by operando Raman spectroscopy. J. Am. Chem. Soc. 141, 18704–18714 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Li, J., Maresi, I., Lum, Y. & Ager, J. W. Effects of surface diffusion in electrocatalytic CO2 reduction on Cu revealed by kinetic Monte Carlo simulations. J. Chem. Phys. 155, 164701 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Zhu, Q. S. et al. The solvation environment of molecularly dispersed cobalt phthalocyanine determines methanol selectivity during electrocatalytic CO2 reduction. Nat. Catal. 7, 987–999 (2024).

    Article  CAS  Google Scholar 

  30. Li, J. Y., Li, X., Gunathunge, C. M. & Waegele, M. M. Hydrogen bonding steers the product selectivity of electrocatalytic CO reduction. Proc. Natl Acad. Sci. USA 116, 9220–9229 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Malkani, A. S. et al. Understanding the electric and nonelectric field components of the cation effect on the electrochemical CO reduction reaction. Sci. Adv. 6, eabd2569 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Resasco, J. et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Wallentine, S., Bandaranayake, S., Biswas, S. & Baker, L. R. Plasmon-resonant vibrational sum frequency generation of electrochemical interfaces: direct observation of carbon dioxide electroreduction on gold. J. Phys. Chem. A 124, 8057–8064 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Zhu, Q. S., Wallentine, S. K., Deng, G. H., Rebstock, J. A. & Baker, L. R. The solvation-induced Onsager reaction field rather than the double-layer field controls CO reduction on gold. JACS Au 2, 472–482 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jouny, M., Luc, W. & Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    Article  CAS  Google Scholar 

  36. Zenyuk, I. V., Das, P. K. & Weber, A. Z. Understanding impacts of catalyst-layer thickness on fuel-cell performance via mathematical modeling. J. Electrochem. Soc. 163, F691–F703 (2016).

    Article  CAS  Google Scholar 

  37. Sabharwal, M. & Secanell, M. Understanding the effect of porosity and pore size distribution on low loading catalyst layers. Electrochim. Acta 419, 140410 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Electrocatalysis work was supported by the US National Science Foundation (grant number CHE-2154724, H.W.). Flow cell work was supported by the Yale Center for Natural Carbon Capture (H.W.). SFG work was supported by the US National Science Foundation (grant number CBET-2129963, L.R.B. and H.W.). We thank C. Ow-Yang from Thermo Fisher Scientific for the assistance in the collection of the STEM and EDS data.

Author information

Authors and Affiliations

Authors

Contributions

J.L. and H.W. conceived this project and designed the experiments. J.L. and Z.J. synthesized the catalyst materials. J.L. performed the electrochemical measurements and analysed the data. Q.Z. and L.R.B. conducted the SFG measurements. H.L., L.R., S.Y. and Y.L. performed the STEM and EDS characterization. A.C. and Z.F. performed the XAS experiments. J.L. and H.W. wrote the paper with input from Q.Z. and L.R.B. B.S., Y.G., S.C. and C.L.R. contributed to data analysis and edited the paper. H.W. supervised the project.

Corresponding authors

Correspondence to Shize Yang, L. Robert Baker or Hailiang Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Qinggong Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21 and Tables 1 and 2.

Source data

Source Data Fig. 1

Electrochemical testing data.

Source Data Fig. 3

Electrochemical testing data.

Source Data Fig. 4

Electrochemical testing data.

Source Data Fig. 5

In situ SFG testing data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhu, Q., Chang, A. et al. Molecular-scale CO spillover on a dual-site electrocatalyst enhances methanol production from CO2 reduction. Nat. Nanotechnol. 20, 515–522 (2025). https://doi.org/10.1038/s41565-025-01866-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-025-01866-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing