Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Size-driven phase evolution in ultrathin relaxor films

Abstract

Relaxor ferroelectrics (relaxors) are a special class of ferroelectrics with polar nanodomains (PNDs), which present characteristics such as slim hysteresis loops and strong dielectric relaxation. Applications such as nanoelectromechanical systems, capacitive-energy storage and pyroelectric-energy harvesters require thin-film relaxors. Hence, understanding relaxor behaviour in the ultrathin limit is of both fundamental and technological importance. Here the evolution of relaxor phases and PNDs with thickness is explored in prototypical thin relaxor films. Epitaxial 0.68PbMg1/3Nb2/3O3-0.32PbTiO3 films of various nanometre thicknesses are grown by pulsed-laser deposition and characterized by ferroelectric and dielectric measurements, temperature-dependent synchrotron X-ray diffuse scattering, scanning transmission electron microscopy and molecular dynamics simulations. As the film thickness approaches the length of the long axis of the PNDs (25–30 nm), electrostatically driven phase instabilities induce their rotation towards the plane of the films, stabilize the relaxor behaviour and give rise to anisotropic phase evolution along the out-of-plane and in-plane directions. The complex anisotropic evolution of relaxor properties ends in a collapse of the relaxor behaviour when the film thickness reaches the smallest dimension of the PNDs (6–10 nm). These findings establish that PNDs define the critical length scale for the evolution of relaxor behaviour at the nanoscale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Out-of-plane ferroelectric properties.
Fig. 2: Out-of-plane dielectric properties.
Fig. 3: X-ray diffuse-scattering studies.
Fig. 4: STEM characterizations.
Fig. 5: MD simulations.
Fig. 6: In-plane dielectric properties and anisotropic phase evolution upon size reduction.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the Article and its Supplementary Information. The datasets used in the Supplementary Information are available via Zenodo at https://doi.org/10.5281/zenodo.14510532 (ref. 57). Source data are provided with this paper.

Code availability

Custom Python scripts used to analyse STEM images are available from the corresponding author upon request.

References

  1. Ahn, C. H., Rabe, K. M. & Triscone, J.-M. Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303, 488–491 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Schlom, D. G. et al. Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37, 589–626 (2007).

    Article  CAS  Google Scholar 

  3. Catalan, G. et al. Flexoelectric rotation of polarization in ferroelectric thin films. Nat. Mater. 10, 963–967 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Kim, J. et al. Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films. Science 369, 81–84 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Peng, W. et al. Constructing polymorphic nanodomains in BaTiO3 films via epitaxial symmetry engineering. Adv. Funct. Mater. 30, 1910569 (2020).

    Article  CAS  Google Scholar 

  6. Lee, D. et al. Emergence of room-temperature ferroelectricity at reduced dimensions. Science 349, 1314–1317 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2015).

    Article  Google Scholar 

  8. Lee, C.-H. et al. Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics. Nature 502, 532–536 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Keech, R. et al. Declamped piezoelectric coefficients in patterned 70/30 lead magnesium niobate–lead titanate thin films. Adv. Funct. Mater. 27, 1605014 (2017).

    Article  Google Scholar 

  10. Kim, J. et al. Coupled polarization and nanodomain evolution underpins large electromechanical responses in relaxors. Nat. Phys. 18, 1502–1509 (2022).

    Article  CAS  Google Scholar 

  11. Shetty, S. et al. Relaxor behavior in ordered lead magnesium niobate (PbMg1/3Nb2/3O3) thin films. Adv. Funct. Mater. 29, 1804258 (2019).

    Article  Google Scholar 

  12. Naumov, I. I., Bellaiche, L. & Fu, H. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Eom, C. B. & Trolier-McKinstry, S. Thin-film piezoelectric MEMS. MRS Bull. 37, 1007–1017 (2012).

    Article  CAS  Google Scholar 

  14. Baek, S. H. et al. Giant piezoelectricity on Si for hyperactive MEMS. Science 334, 958–961 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Pan, H. et al. Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design. Science 365, 578–582 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Pandya, S. et al. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films. Nat. Mater. 17, 432–438 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Lindemann, S. et al. Low-voltage magnetoelectric coupling in membrane heterostructures. Sci. Adv. 7, eabh2294 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Takenaka, H., Grinberg, I. & Rappe, A. M. Anisotropic local correlations and dynamics in a relaxor ferroelectric. Phys. Rev. Lett. 110, 147602 (2013).

    Article  PubMed  Google Scholar 

  20. Li, F. et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nat. Commun. 7, 13807 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Takenaka, H., Grinberg, I., Liu, S. & Rappe, A. M. Slush-like polar structures in single-crystal relaxors. Nature 546, 391–395 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Xu, G., Wen, J., Stock, C. & Gehring, P. M. Phase instability induced by polar nanoregions in a relaxor ferroelectric system. Nat. Mater. 7, 562–566 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Toulouse, J. The three characteristic temperatures of relaxor dynamics and their meaning. Ferroelectrics 369, 203–213 (2008).

    Article  CAS  Google Scholar 

  24. Kim, J. et al. Epitaxial strain control of relaxor ferroelectric phase evolution. Adv. Mater. 31, 1901060 (2019).

    Article  Google Scholar 

  25. Kumar, A. et al. Atomic-resolution electron microscopy of nanoscale local structure in lead-based relaxor ferroelectrics. Nat. Mater. 20, 62–67 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. de Mathan, N. et al. A structural model for the relaxor PbMg1/3Nb2/3O3 at 5 K. J. Phys. Condens. Matter 3, 8159 (1991).

  27. Jiménez, R. et al. Effect of grain size on the transition between ferroelectric and relaxor states in 0.8Pb(Mg1/3Nb2/3)O3-0.2PbTiO3 ceramics. Phys. Rev. B 78, 094103 (2008).

    Article  Google Scholar 

  28. Randall, C. A., Kim, N., Kucera, J., Cao, W. & Shrout, T. R. Intrinsic and extrinsic size effects in fine‐grained morphotropic‐phase‐boundary lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81, 677–688 (1998).

    Article  CAS  Google Scholar 

  29. Shaw, T. M., Trolier-McKinstry, S. & McIntyre, P. C. The properties of ferroelectric films at small dimensions. Mater. Sci. 30, 263–298 (2000).

    CAS  Google Scholar 

  30. Blinc, R., Zalar, B., Zupančič, B., Morozovska, A. N. & Glinchuk, M. D. NMR study of size effects in relaxor PMN nanoparticles. Phys. Stat. Sol. 248, 2653–2655 (2011).

    Article  CAS  Google Scholar 

  31. Grigalaitis, R. et al. Size effects in a relaxor: further insights into PMN. J. Phys. Condens. Matter 26, 272201 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Keech, R. et al. Lateral scaling of Pb(Mg1/3Nb2/3)O3-PbTiO3 thin films for piezoelectric logic applications. J. Appl. Phys. 115, 234106 (2014).

    Article  Google Scholar 

  33. Riemer, L. M. et al. Dielectric and electro-mechanic nonlinearities in perovskite oxide ferroelectrics, relaxors, and relaxor ferroelectrics. J. Appl. Phys. 129, 054101 (2021).

    Article  CAS  Google Scholar 

  34. Kay, H. F. & Dunn, J. W. Thickness dependence of the nucleation field of triglycine sulphate. Philos. Mag. A 7, 2027–2034 (1962).

    Article  CAS  Google Scholar 

  35. Burns, G. & Dacol, F. H. Crystalline ferroelectrics with glassy polarization behavior. Phys. Rev. B 28, 2527–2530 (1983).

    Article  CAS  Google Scholar 

  36. Dkhil, B. et al. Intermediate temperature scale T in lead-based relaxor systems. Phys. Rev. B 80, 064103 (2009).

    Article  Google Scholar 

  37. Viehland, D., Jang, S., Cross, E. L. & Wuttig, M. The dielectric relaxation of lead magnesium niobate relaxor ferroelectrics. Phil. Mag. Part B 64, 335–344 (1991).

    Article  CAS  Google Scholar 

  38. Hehlen, B., Al-Sabbagh, M., Al-Zein, A. & Hlinka, J. Relaxor ferroelectrics: back to the single-soft-mode picture. Phys. Rev. Lett. 117, 155501 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Fernandez, A., Kim, J., Meyers, D., Saremi, S. & Martin, L. W. Finite-size effects in lead scandium tantalate relaxor thin films. Phys. Rev. B 101, 094102 (2020).

    Article  CAS  Google Scholar 

  40. Wu, Z., Duan, W., Wu, J., Gu, B.-L. & Zhang, X.-W. Dielectric properties of relaxor ferroelectric films. J. Appl. Phys. 98, 094105 (2005).

    Article  Google Scholar 

  41. Karthik, J., Damodaran, A. R. & Martin, L. W. Epitaxial ferroelectric heterostructures fabricated by selective area epitaxy of SrRuO3 using an MgO mask. Adv. Mater. 24, 1610–1615 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Jiang, Y. et al. Enabling ultra-low-voltage switching in BaTiO3. Nat. Mater. 21, 779–785 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Frederick, J. et al. Visualization of dielectric constant-electric field-temperature phase maps for imprinted relaxor ferroelectric thin films. Appl. Phys. Lett. 108, 132902 (2016).

    Article  Google Scholar 

  44. Fong, D. D. et al. Ferroelectricity in ultrathin perovskite films. Science 304, 1650–1653 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Grinberg, I., Juhás, P., Davies, P. K. & Rappe, A. M. Relationship between Local structure and relaxor behavior in perovskite oxides. Phys. Rev. Lett. 99, 267603 (2007).

    Article  PubMed  Google Scholar 

  46. Carreaud, J. et al. Size-driven relaxation and polar states in PbMg1/3Nb2/3O3-based system. Phys. Rev. B 72, 174115 (2005).

    Article  Google Scholar 

  47. Xu, G., Zhong, Z., Bing, Y., Ye, Z.-G. & Shirane, G. Electric-field-induced redistribution of polar nano-regions in a relaxor ferroelectric. Nat. Mater. 5, 134–140 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Xie, A. et al. Supercritical relaxor nanograined ferroelectrics for ultrahigh‐energy‐storage capacitors. Adv. Mater. 34, 2204356 (2022).

    Article  CAS  Google Scholar 

  49. Li, F. et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Science 364, 264–268 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Pirc, R. & Blinc, R. Vogel–Fulcher freezing in relaxor ferroelectrics. Phys. Rev. B 76, 020101 (2007).

    Article  Google Scholar 

  51. Sang, X. & LeBeau, J. M. Revolving scanning transmission electron microscopy: correcting sample drift distortion without prior knowledge. Ultramicroscopy 138, 28–35 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. LeBeau, J. M., Findlay, S. D., Allen, L. J. & Stemmer, S. Position averaged convergent beam electron diffraction: theory and applications. Ultramicroscopy 110, 118–125 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Sato, Y. et al. Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med. Image Anal. 2, 143–168 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Qi, Y. & Rabe, K. M. Phase competition in HfO2 with applied electric field from first principles. Phys. Rev. B 102, 214108 (2020).

    Article  CAS  Google Scholar 

  55. Wang, X. & Vanderbilt, D. First-principles perturbative computation of dielectric and Born charge tensors in finite electric fields. Phys. Rev. B 75, 115116 (2007).

    Article  Google Scholar 

  56. Wang, X. & Vanderbilt, D. First-principles perturbative computation of phonon properties of insulators in finite electric fields. Phys. Rev. B 74, 054304 (2006).

    Article  Google Scholar 

  57. Kim, J. Dataset of size-driven phase evolution in ultrathin relaxor films. Zenodo https://doi.org/10.5281/zenodo.14510532 (2024).

Download references

Acknowledgements

J.K. acknowledges support from the Army Research Office under grant W911NF-21-1-0118. Y.Q. acknowledges support from the Office of Naval Research grant under N00014-24-1-2500 and National Science Foundation EPSCoR RII-Track-1 Cooperative Agreement 'Future Technologies and Enabling Plasma Processes’ OIA-2148653. H.T. acknowledges support from the Office of Naval Research grant under N00014-24-1-2500. Y.L.T. acknowledges support from the National Natural Science Foundation of China under grant 51922100. Y.L.T. acknowledges support from the Youth Innovation Promotion Association CAS under grant no. Y202048. R.R., J.M.L., A.M.R. and L.W.M. acknowledge that this research was sponsored by the Army Research Laboratory and was accomplished under cooperative agreement number W911NF-24-2-0100. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the US Government. The US Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein. L.W.M. acknowledges additional support by the Air Force Office of Scientific Research under award number FA9550-24-1-0266. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the US Air Force. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science user facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

J.K. and L.W.M. conceived this study. J.K. synthesized the films. J.K. performed electrical characterizations. J.K. performed structural characterizations. J.K. performed synchrotron diffraction. A.K., Y.-L.T, M.X., M.Z., J.M.L. and R.R. performed the STEM studies. Y.Q., H.T. and A.M.R. performed the MD simulations studies. J.K, Y.Q., A.K., H.T., J.M.L., A.M.R. and L.W.M. performed the formal analysis of the results. J.K. wrote the initial draft of the manuscript. J.K., Y.Q., A.K., J.M.L., A.M.R. and L.W.M. revised the manuscript. All authors discussed the results and edited the manuscript.

Corresponding author

Correspondence to Lane W. Martin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Fei Li, Yuan-Hua Lin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text 1–5, Figs. 1–21 and References.

Source data

Source Data Fig. 1

Raw data for Fig. 1.

Source Data Fig. 2

Raw data for Fig. 2.

Source Data Fig. 3

Raw data for Fig. 3.

Source Data Fig. 5

Raw data for Fig. 5.

Source Data Fig. 6

Raw data for Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Qi, Y., Kumar, A. et al. Size-driven phase evolution in ultrathin relaxor films. Nat. Nanotechnol. 20, 478–486 (2025). https://doi.org/10.1038/s41565-025-01863-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-025-01863-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing