Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Printing of 3D photonic crystals in titania with complete bandgap across the visible spectrum

Abstract

A photonic bandgap is a range of wavelengths wherein light is forbidden from entering a photonic crystal, similar to the electronic bandgap in semiconductors. Fabricating photonic crystals with a complete photonic bandgap in the visible spectrum presents at least two important challenges: achieving a material refractive index > ~2 and a three-dimensional patterning resolution better than ~280 nm (lattice constant of 400 nm). Here we show an approach to overcome such limitations using additive manufacturing, thus realizing high-quality, high-refractive index photonic crystals with size-tunable bandgaps across the visible spectrum. We develop a titanium ion-doped resin (Ti-Nano) for high-resolution printing by two-photon polymerization lithography. After printing, the structures are heat-treated in air to induce lattice shrinkage and produce titania nanostructures. We attain three-dimensional photonic crystals with patterning resolution as high as 180 nm and refractive index of 2.4–2.6. Optical characterization reveals ~100% reflectance within the photonic crystal bandgap in the visible range. Finally, we show capabilities in defining local defects and demonstrate proof-of-principle applications in spectrally selective perfect reflectors and chiral light discriminators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fabrication approach, resin formulation and micrographs of high-resolution 3D PhCs.
Fig. 2: Materials characterization of Ti-Nano.
Fig. 3: Observation of high reflectance in the visible range.
Fig. 4: Proof-of-principle applications of the 3D PhC.

Similar content being viewed by others

Data availability

The data that support the figures and other findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Park, H.-G. et al. Electrically driven single-cell photonic crystal laser. Science 305, 1444–1447 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Altug, H., Englund, D. & Vučković, J. Ultrafast photonic crystal nanocavity laser. Nat. Phys. 2, 484–488 (2006).

    Article  CAS  Google Scholar 

  5. Deubel, M. et al. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat. Mater. 3, 444–447 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Fenzl, C., Hirsch, T. & Wolfbeis, O. S. Photonic crystals for chemical sensing and biosensing. Angew. Chem. Int. Ed. 53, 3318–3335 (2014).

    Article  CAS  Google Scholar 

  7. Lu, Z. et al. Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies. Phys. Rev. Lett. 95, 153901 (2005).

    Article  PubMed  Google Scholar 

  8. Fink, Y. et al. A dielectric omnidirectional reflector. Science 282, 1679–1682 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Chow, E. et al. Three-dimensional control of light in a two-dimensional photonic crystal slab. Nature 407, 983–986 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Cai, Z. et al. From colloidal particles to photonic crystals: advances in self-assembly and their emerging applications. Chem. Soc. Rev. 50, 5898–5951 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, H. et al. Two-photon polymerization lithography for optics and photonics: fundamentals, materials, technologies, and applications. Adv. Funct. Mater. 33, 2214211 (2023).

    Article  CAS  Google Scholar 

  12. Blanco, A. et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 405, 437–440 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Ding, T., Song, K., Clays, K. & Tung, C. H. Fabrication of 3D photonic crystals of ellipsoids: convective self-assembly in magnetic field. Adv. Mater. 21, 1936–1940 (2009).

    Article  CAS  Google Scholar 

  14. Urbas, A. M., Maldovan, M., DeRege, P. & Thomas, E. L. Bicontinuous cubic block copolymer photonic crystals. Adv. Mater. 14, 1850–1853 (2002).

    Article  CAS  Google Scholar 

  15. He, M. et al. Colloidal diamond. Nature 585, 524–529 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Maldovan, M., Urbas, A., Yufa, N., Carter, W. & Thomas, E. Photonic properties of bicontinuous cubic microphases. Phys. Rev. B 65, 165123 (2002).

    Article  Google Scholar 

  17. Peng, S. et al. Three-dimensional single gyroid photonic crystals with a mid-infrared bandgap. ACS Photon. 3, 1131–1137 (2016).

    Article  CAS  Google Scholar 

  18. Fischer, J. & Wegener, M. Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photon. Rev. 7, 22–44 (2013).

    Article  CAS  Google Scholar 

  19. Gan, Z., Turner, M. D. & Gu, M. Biomimetic gyroid nanostructures exceeding their natural origins. Sci. Adv. 2, e1600084 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fischer, J. & Wegener, M. Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy. Opt. Mater. Express 1, 614–624 (2011).

    Article  CAS  Google Scholar 

  21. Frölich, A., Fischer, J., Zebrowski, T., Busch, K. & Wegener, M. Titania woodpiles with complete three-dimensional photonic bandgaps in the visible. Adv. Mater. 25, 3588–3592 (2013).

    Article  PubMed  Google Scholar 

  22. Liu, Y. et al. Structural color three-dimensional printing by shrinking photonic crystals. Nat. Commun. 10, 4340 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Oran, D. et al. 3D nanofabrication by volumetric deposition and controlled shrinkage of patterned scaffolds. Science 362, 1281–1285 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vyatskikh, A. et al. Additive manufacturing of 3D nano-architected metals. Nat. Commun. 9, 593 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vyatskikh, A., Ng, R. C., Edwards, B., Briggs, R. M. & Greer, J. R. Additive manufacturing of high-refractive-index, nanoarchitected titanium dioxide for 3D dielectric photonic crystals. Nano Lett. 20, 3513–3520 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Cooperstein, I., Indukuri, S. C., Bouketov, A., Levy, U. & Magdassi, S. 3D printing of micrometer-sized transparent ceramics with on-demand optical-gain properties. Adv. Mater. 32, 2001675 (2020).

    Article  CAS  Google Scholar 

  27. Kotz, F. et al. Two-photon polymerization of nanocomposites for the fabrication of transparent fused silica glass microstructures. Adv. Mater. 33, 2006341 (2021).

    Article  CAS  Google Scholar 

  28. Mettry, M. et al. Refractive index matched polymeric and preceramic resins for height-scalable two-photon lithography. RSC Adv. 11, 22633–22639 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xiong, W. et al. Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication. Adv. Mater. 28, 2002–2009 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Kadic, M., Milton, G. W., van Hecke, M. & Wegener, M. 3D metamaterials. Nat. Rev. Phys. 1, 198–210 (2019).

    Article  Google Scholar 

  31. Guan, L. et al. Light and matter co-confined multi-photon lithography. Nat. Commun. 15, 2387 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maldovan, M. & Thomas, E. L. Diamond-structured photonic crystals. Nat. Mater. 3, 593–600 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Turner, M. D. et al. Miniature chiral beamsplitter based on gyroid photonic crystals. Nat. Photon. 7, 801–805 (2013).

    Article  CAS  Google Scholar 

  34. Ohnuki, R., Kobayashi, Y. & Yoshioka, S. Polarization-dependent reflection of I-WP minimal-surface-based photonic crystal. Phys. Rev. E 106, 014123 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Zhao, B., Zhou, J., Chen, Y. & Peng, Y. Effect of annealing temperature on the structure and optical properties of sputtered TiO2 films. J. Alloy. Compd. 509, 4060–4064 (2011).

    Article  CAS  Google Scholar 

  36. Kim, J.-H. et al. Control of refractive index by annealing to achieve high figure of merit for TiO2/Ag/TiO2 multilayer films. Ceram. Int. 42, 14071–14076 (2016).

    Article  CAS  Google Scholar 

  37. O’Byrne, M. et al. Investigation of the anatase-to-rutile transition for TiO2 sol-gel coatings with refractive index up to 2.7. Thin Solid Films 790, 140193 (2024).

    Article  Google Scholar 

  38. Ha, S. T. et al. Directional lasing in resonant semiconductor nanoantenna arrays. Nat. Nanotechnol. 13, 1042–1047 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Lee, K. T., Ji, C., Banerjee, D. & Guo, L. J. Angular- and polarization-independent structural colors based on 1D photonic crystals. Laser Photon. Rev. 9, 354–362 (2015).

    Article  CAS  Google Scholar 

  40. Wu, Y.-K. R., Hollowell, A. E., Zhang, C. & Guo, L. J. Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit. Sci. Rep. 3, 1194 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lin, E.-L., Hsu, W.-L. & Chiang, Y.-W. Trapping structural coloration by a bioinspired gyroid microstructure in solid state. ACS Nano 12, 485–493 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Lu, L., Fu, L., Joannopoulos, J. D. & Soljačić, M. Weyl points and line nodes in gyroid photonic crystals. Nat. Photon. 7, 294–299 (2013).

    Article  CAS  Google Scholar 

  43. Lu, L. et al. Experimental observation of Weyl points. Science 349, 622–624 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Rinne, S. A., García-Santamaría, F. & Braun, P. V. Embedded cavities and waveguides in three-dimensional silicon photonic crystals. Nat. Photon. 2, 52–56 (2008).

    Article  CAS  Google Scholar 

  45. Ishizaki, K., Koumura, M., Suzuki, K., Gondaira, K. & Noda, S. Realization of three-dimensional guiding of photons in photonic crystals. Nat. Photon. 7, 133–137 (2013).

    Article  CAS  Google Scholar 

  46. Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Tang, G. J. et al. Topological photonic crystals: physics, designs, and applications. Laser Photon. Rev. 16, 2100300 (2022).

    Article  Google Scholar 

  48. Bauer, J., Crook, C. & Baldacchini, T. A sinterless, low-temperature route to 3D print nanoscale optical-grade glass. Science 380, 960–966 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Saccone, M. A., Gallivan, R. A., Narita, K., Yee, D. W. & Greer, J. R. Additive manufacturing of micro-architected metals via hydrogel infusion. Nature 612, 685–690 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, C. et al. Two-photon microstructure-polymerization initiated by a coumarin derivative/iodonium salt system. Chem. Phys. Lett. 340, 444–448 (2001).

    Article  CAS  Google Scholar 

  51. Zhang, W. et al. Stiff shape memory polymers for high-resolution reconfigurable nanophotonics. Nano Lett. 22, 8917–8924 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Al-Ketan, O. & Abu Al‐Rub, R. K. MSLattice: a free software for generating uniform and graded lattices based on triply periodic minimal surfaces. Mater. Des. Process. Commun. 3, e205 (2021).

    Google Scholar 

  53. Zhang, W. et al. Structural multi-colour invisible inks with submicron 4D printing of shape memory polymers. Nat. Commun. 12, 112 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.K.W.Y. acknowledges the National Research Foundation (NRF) Singapore (NRF-NRFI06-2020-0005 and NRF-CRP20-2017-0004). S.T.H. acknowledges the funding support from MTC-Programmatic (grant no. M21J9b0085) administered by A*STAR. H. Liu acknowledges the A*STAR Career Development Fund (222D800032). The work made use of SUTD’s cleanroom facilities. We acknowledge the helpful discussions with E. L. Thomas (Texas A&M University).

Author information

Authors and Affiliations

Authors

Contributions

W.Z. and J.K.W.Y. conceived the idea. W.Z. and J.M. developed the photoresists. W.Z. designed the experiments, and fabricated and characterized the samples. W.Z., Hao Wang and Hongtao Wang performed the FDTD simulation. X.L.L., S.T.H., B.Z., C.-F.P., H. Li, H. Liu, H.Y., X.Y. and S.L. assisted in the characterization. J.K.W.Y. supervised the research. All authors contributed to the writing and revision of the paper.

Corresponding author

Correspondence to Joel K. W. Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Mingzhu Li, Sourabh Saha and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–19 and Figs. 1–20.

Source data

Source Data Fig. 2

Source data for Fig. 2a,e–h.

Source Data Fig. 3

Source data for Fig. 3b,c.

Source Data Fig. 4

Source data for Fig. 4c,f.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Min, J., Wang, H. et al. Printing of 3D photonic crystals in titania with complete bandgap across the visible spectrum. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01780-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01780-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing