Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-entropy non-covalent cyclic peptide glass

Abstract

Biomolecule-based non-covalent glasses are biocompatible and biodegradable, and offer a sustainable alternative to conventional glass. Cyclic peptides (CPs) can serve as promising glass formers owing to their structural rigidity and resistance to enzymatic degradation. However, their potent crystallization tendency hinders their potential in glass construction. Here we engineered a series of CP glasses with tunable glass transition behaviours by modulating the conformational complexity of CP clusters. By incorporating multicomponent CPs, the formation of high-entropy CP glass is facilitated, which—in turn—inhibits the crystallization of individual CPs. The high-entropy CP glass demonstrates enhanced mechanical properties and enzyme tolerance compared with individual CP glass and a unique biorecycling capability that is unattainable by traditional glasses. These findings provide a promising paradigm for the design and development of stable non-covalent glasses based on naturally derived biomolecules, and advance their application in pharmaceutical formulations and smart functional materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of CP glass formed using a single component—cPY.
Fig. 2: Molecular mechanism underlying the formation of cPY glass.
Fig. 3: Tunable glass transition behaviours.
Fig. 4: Formation and characterization of HECP glass.
Fig. 5: High-entropy-enhanced mechanical properties of CP glasses.

Similar content being viewed by others

Data availability

All data are available in the article and its Supplementary Information. Source data are provided with this paper and are also available via Figshare at https://doi.org/10.6084/m9.figshare.26181884 (ref. 60). Additional requests can be directed to the corresponding author.

References

  1. Francl, M. Heart of glass. Nat. Chem. 14, 717–718 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Zimmerman, J. B., Anastas, P. T., Erythropel, H. C. & Leitner, W. Designing for a green chemistry future. Science 367, 397–400 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Xing, R., Yuan, C., Fan, W., Ren, X. & Yan, X. Biomolecular glass with amino acid and peptide nanoarchitectonics. Sci. Adv. 9, eadd8105 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cao, S., Fan, W., Chang, R., Yuan, C. & Yan, X. Metal ion-coordinated biomolecular noncovalent glass with ceramic-like mechanics. CCS Chem. https://doi.org/10.31635/ccschem.024.202303832 (2024).

  5. Wang, C., Yokota, T. & Someya, T. Natural biopolymer-based biocompatible conductors for stretchable bioelectronics. Chem. Rev. 121, 2109–2146 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. La, T.-G. & Le, L. H. Flexible and wearable ultrasound device for medical applications: a review on materials, structural designs, and current challenges. Adv. Mater. Technol. 7, 2100798 (2022).

    Article  Google Scholar 

  7. Song, Q. et al. Molecular self-assembly and supramolecular chemistry of cyclic peptides. Chem. Rev. 121, 13936–13995 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sheehan, F. et al. Peptide-based supramolecular systems chemistry. Chem. Rev. 121, 13869–13914 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Hu, K. et al. Tuning peptide self-assembly by an in-tether chiral center. Sci. Adv. 4, eaar5907 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Borthwick, A. D. 2,5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem. Rev. 112, 3641–3716 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Bellezza, I., Peirce, M. J. & Minelli, A. Cyclic dipeptides: from bugs to brain. Trends Mol. Med. 20, 551–558 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Fan, Z. et al. Near infrared fluorescent peptide nanoparticles for enhancing esophageal cancer therapeutic efficacy. Nat. Commun. 9, 2605 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tao, K. et al. Quantum confined peptide assemblies with tunable visible to near-infrared spectral range. Nat. Commun. 9, 3217 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Merz, M. L. et al. De novo development of small cyclic peptides that are orally bioavailable. Nat. Chem. Biol. 20, 624–633 (2024).

    Article  CAS  PubMed  Google Scholar 

  15. Muttenthaler, M., King, G. F., Adams, D. J. & Alewood, P. F. Trends in peptide drug discovery. Nat. Rev. Drug Discov. 20, 309–325 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Chen, Y. et al. Self-assembly of cyclic dipeptides: platforms for functional materials. Protein Pept. Lett. 27, 688–697 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Yan, X., Su, Y., Li, J., Früh, J. & Möhwald, H. Uniaxially oriented peptide crystals for active optical waveguiding. Angew. Chem. Int. Ed. 50, 11186–11191 (2011).

    Article  CAS  Google Scholar 

  18. Yang, M. et al. Cyclic dipeptide nanoribbons formed by dye-mediated hydrophobic self-assembly for cancer chemotherapy. J. Colloid Interface Sci. 557, 458–464 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Manchineella, S. & Govindaraju, T. Molecular self-assembly of cyclic dipeptide derivatives and their applications. ChemPlusChem. 82, 88–106 (2016).

    Article  PubMed  Google Scholar 

  20. Chang, R., Yuan, C., Zhou, P., Xing, R. & Yan, X. Peptide self-assembly: from ordered to disordered. Acc. Chem. Res. 57, 289–301 (2024).

    Article  CAS  PubMed  Google Scholar 

  21. Yuan, C. et al. Hierarchically oriented organization in supramolecular peptide crystals. Nat. Rev. Chem. 3, 567–588 (2019).

    Article  CAS  Google Scholar 

  22. Greer, A. L. Confusion by design. Nature 366, 303–304 (1993).

    Article  Google Scholar 

  23. Perim, E. et al. Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases. Nat. Commun. 7, 12315 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ke, Y. et al. Smart windows: electro-, thermo-, mechano-, photochromics, and beyond. Adv. Energy Mater. 9, 1902066 (2019).

    Article  CAS  Google Scholar 

  25. Kasimuthumaniyan, S., Reddy, A. A., Krishnan, N. M. A. & Gosvami, N. N. Understanding the role of post-indentation recovery on the hardness of glasses: case of silica, borate, and borosilicate glasses. J. Non-Cryst. Solids 534, 119955 (2020).

    Article  CAS  Google Scholar 

  26. Knowles, T. P. J. & Buehler, M. J. Nanomechanics of functional and pathological amyloid materials. Nat. Nanotechnol. 6, 469–479 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Fang, W. et al. Organic–inorganic covalent–ionic molecules for elastic ceramic plastic. Nature 619, 293–299 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Hong, Y. P. et al. Crystal structure and spectroscopic properties of cyclic dipeptide: a racemic mixture of cyclo(d-prolyl-l-tyrosyl) and cyclo(l-prolyl-d-tyrosyl). Bull. Korean Chem. Soc. 35, 2299–2303 (2014).

    Article  CAS  Google Scholar 

  29. Rozenberg, M., Shoham, G., Reva, I. & Fausto, R. A correlation between the proton stretching vibration red shift and the hydrogen bond length in polycrystalline amino acids and peptides. Phys. Chem. Chem. Phys. 7, 2376–2383 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Bertoldo Menezes, D. et al. Raman spectroscopic insights into the glass transition of poly(methyl methacrylate). Phys. Chem. Chem. Phys. 23, 1649–1665 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Swallen, S. F. et al. Organic glasses with exceptional thermodynamic and kinetic stability. Science 315, 353–356 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Ito, K., Moynihan, C. T. & Angell, C. A. Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature 398, 492–495 (1999).

    Article  CAS  Google Scholar 

  33. Smedskjaer, M. M. et al. Topological principles of borosilicate glass chemistry. J. Phys. Chem. B 115, 12930–12946 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, L.-M., Angell, C. A. & Richert, R. Fragility and thermodynamics in nonpolymeric glass-forming liquids. J. Chem. Phys. 125, 074505 (2006).

    Article  PubMed  Google Scholar 

  35. Böhmer, R., Ngai, K. L., Angell, C. A. & Plazek, D. J. Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 99, 4201–4209 (1993).

    Article  Google Scholar 

  36. Greaves, G. N., Greer, A. L., Lakes, R. S. & Rouxel, T. Poisson’s ratio and modern materials. Nat. Mater. 10, 823–837 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Huang, D. & McKenna, G. B. New insights into the fragility dilemma in liquids. J. Chem. Phys. 114, 5621–5630 (2001).

    Article  CAS  Google Scholar 

  38. Rodrigues, A. C., Viciosa, M. T., Danède, F., Affouard, F. & Correia, N. T. Molecular mobility of amorphous S-flurbiprofen: a dielectric relaxation spectroscopy approach. Mol. Pharm. 11, 112–130 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Shi, Y. et al. Revealing the relationship between liquid fragility and medium-range order in silicate glasses. Nat. Commun. 14, 13 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Novikov, V. N. Upper bound of fragility from spatial fluctuations of shear modulus and boson peak in glasses. Phys. Rev. E 106, 024611 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Kaushal, A. M. & Bansal, A. K. Thermodynamic behavior of glassy state of structurally related compounds. Eur. J. Pharm. Biopharm. 69, 1067–1076 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Miracle, D. B. & Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017).

    Article  CAS  Google Scholar 

  43. Yang, M. et al. High thermal stability and sluggish crystallization kinetics of high-entropy bulk metallic glasses. J. Appl. Phys. 119, 245112 (2016).

    Article  Google Scholar 

  44. Ràfols-Ribé, J. et al. High-performance organic light-emitting diodes comprising ultrastable glass layers. Sci. Adv. 4, eaar8332 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Willcott, M. R. MestRe Nova. J. Am. Chem. Soc. 131, 13180 (2009).

    Article  CAS  Google Scholar 

  46. Oliver, W. C. & Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    Article  CAS  Google Scholar 

  47. Jiang, B. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371, 830–834 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005).

    Article  PubMed  Google Scholar 

  49. Ulmschneider, J. P. & Jorgensen, W. L. Polypeptide folding using Monte Carlo sampling, concerted rotation, and continuum solvation. J. Am. Chem. Soc. 126, 1849–1857 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Abascal, J. L. F. & Vega, C. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123, 234505 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Brooks, B. R. et al. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  52. Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).

    Article  CAS  Google Scholar 

  53. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    Article  CAS  Google Scholar 

  54. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    Article  PubMed  Google Scholar 

  55. Tao, K. et al. Bioinspired supramolecular packing enables high thermo-sustainability. Angew. Chem. Int. Ed. 59, 19037–19041 (2020).

    Article  CAS  Google Scholar 

  56. Burley, S. K. & Petsko, G. A. Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 229, 23–28 (1985).

    Article  CAS  PubMed  Google Scholar 

  57. Ogliaro, F. et al. Gaussian 09, revision A. 02. (Gaussian, 2009).

  58. Boys, S. F. & Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970).

    Article  CAS  Google Scholar 

  59. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  PubMed  Google Scholar 

  60. Yuan, C. et al. Cyclic Peptide High-Entropy Noncovalent Glass. Figshare https://doi.org/10.6084/m9.figshare.26181884 (2024).

Download references

Acknowledgements

This work was supported by the National Science Fund for Distinguished Young Scholars of China (no. 22025207 to X.Y.), the National Natural Science Foundation of China (nos. 22172172 and 22372174 to C.Y.; 22232006 to X.Y.; and 22372173 to P.Z.), National Key R&D Program of China (2023YFA0915300 to X.Y.), Youth Innovation Promotion Association of CAS (grant no. 2022049 to C.Y.) and the IPE Project for Frontier Basic Research (grant no. QYJC-2022-011 to C.Y.). Allocations of computer time from the Supercomputing Centre and ORISE system in the Computer Network Information Centre, Chinese Academy of Sciences, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

X.Y. and C.Y. developed the concept of high-entropy non-covalent glass and designed the experiments. C.Y., W.F. and S.C. performed the experiments. C.Y., W.F., R.X. and X.Y. analysed the experimental data. P.Z. and C.Y. designed the theoretical model and performed the simulations. C.Y. and X.Y. wrote the paper. All authors discussed the results and commented on the paper.

Corresponding author

Correspondence to Xuehai Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Mustafa Guler, Zigang Li, Ziyu Lv and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Multicolor emission of cPY glass.

a, Bright-field and fluorescent imaging of cPY glass. All the scale bars are 100 μm. b, Solid-state fluorescence spectra of cPY glass. c, Solid UV-Vis spectra of cPY glass. The UV-Vis absorption spectra of cPY glass demonstrated spike-like absorbance with four peaks at 319 nm, 370 nm, 478 nm, and 517 nm in the range from 300 nm to 800 nm, characteristic of the quantum-confined photoluminescence, revealing the presence of multiple CPs clusters with different sizes in the cPY glass.

Source data

Extended Data Fig. 2 Versatile HECP glass integrated with other functional components.

a, fluorescence spectra of HECP glass doped with two typical organic dyes. The emergence of the characteristic fluorescence peak confirms the successful introduction of dyes into HECP glass. The inserted images demonstrate the bright-field (top), POM (middle), and fluorescent imaging (bottom) of doped HECP glass. All the scale bars are 500 μm. b, Modulated conductivity of HECP glass doped with different concentrations of phytic acid (PA). Data are displayed individually (hollow dots) and as the mean ± s.d. from n = 3 independent measurements. c, Magnetic HECP glass achieved through the incorporation of Fe3O4 nanoparticles (NPs).

Source data

Extended Data Table 1 A summarized list showing classification criteria of different CPs types with varied glass-forming ability in this work
Extended Data Table 2 A summarized list showing several crucial thermodynamic parameters for the formation of HECP glasses

Supplementary information

Supplementary Information

Supplementary Figs. 1–51 and Tables 1–4.

Supplementary Video 1

AAMD simulations for the formation of cPY glass. This video illustrates the dynamic transition from a long-range ordered cPY crystal to a long-range disordered cPY glass. During the heating process, the temperature was increased from 300 to 590 K over 58 ns, causing the crystal structure to collapse due to the disruption of ordered hydrogen bonding and aromatic stacking interactions. This disruption leads to the formation of a supercooled liquid composed of various cPY clusters. The supercooled liquid was then held at 590 K for 40 ns to reach equilibrium. Following this, it was rapidly quenched to 300 K within 58 ns, thereby kinetically preserving the disordered conformers and resulting in the formation of glass. The aromatic groups are represented by red sheets. Hydrogen, nitrogen and oxygen atoms are coloured white, blue and red, respectively, whereas carbon atoms in the aromatic rings and other sections are coloured purple and green, respectively.

Supplementary Video 2

Magnetic HECP glass bead. This video demonstrates that the HECP glass bead, when incorporated with Fe3O4 nanoparticles (NPs), can be easily attracted by a magnet. This is in contrast to the pristine HECP glass bead, which exhibits no magnetic response. These observations clearly demonstrate the successful integration of a magnetic component into the HECP glass.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Extended Data Fig./Table 1

Statistical source data.

Source Data Extended Data Fig./Table 2

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, C., Fan, W., Zhou, P. et al. High-entropy non-covalent cyclic peptide glass. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01766-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-024-01766-3

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research